Skip to content

Latest commit

 

History

History
102 lines (72 loc) · 3.33 KB

INSTALL.md

File metadata and controls

102 lines (72 loc) · 3.33 KB

Installation

Requirements

  • Linux, CUDA >= 11.7, Python >= 3.8, PyTorch >= 2.0.0 (our setup below is based on CUDA 11.8, Python 3.10, PyTorch 2.0.1; more recent versions should work too, but no guarantees)
  • Conda (anaconda / miniconda work well)
  • visual studio (2019) build tools (Just for windows)

Setup

1. Create conda environment

conda create --name ssvp_slt python=3.10 cmake
conda activate ssvp_slt
python -m pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118
conda install av -c conda-forge

2. (Optional) Video dataloader GPU decoding backend support

If you want to use our video dataloader with GPU decoding backend, you need to reinstall torchvision by building it from scratch following the steps at https://github.com/pytorch/vision/tree/main/torchvision/csrc/io/decoder/gpu. We found that this does not work with ffmpeg 6.1, so we recommend running conda install 'ffmpeg<6.0'. If you get a warning that torchvision is built without GPU decoding support due to bsf.h missing, we recommend manually downloading bsf.h from the ffmpeg source code (https://github.com/FFmpeg/FFmpeg/blob/master/libavcodec/bsf.h, make sure it matches your ffmpeg version!) and placing it under $(path-to-your-conda)/ssvp_slt/include/libavcodec.

3. Pip Installs

Install the remaining dependencies and an egg of our ssvp-slt package:

pip install git+https://github.com/facebookresearch/stopes.git
pip install -r requirements.txt

# Move into fairseq folder and install egg
cd fairseq-sl
pip install -e .
cd ..

# Install ssvp_slt egg from the repo's root
pip install -e .

4. Install dlib

  • Install CUDA and cuDNN with
conda install cuda cudnn -c nvidia
  • Install dlib from the source (write your VS versions)
git clone https://github.com/davisking/dlib.git
cd dlib
mkdir build
cd build
cmake .. -DDLIB_USE_CUDA=1 -DUSE_AVX_INSTRUCTIONS=1 -DCUDAToolkit_ROOT=/path/to/your/conda/envs/dlib/bin/ -G "Visual Studio 17 2022" -A x64 --verbose
cmake --build .
cd ..
python setup.py install --set DLIB_USE_CUDA=1

5. BLEURT

If you want to compute BLEURT scores as part of the translation evals (via common.compute_bleurt=true), you need to install BLEURT:

pip install git+https://github.com/google-research/bleurt.git

6. Set environment variables

You will also likely need to set some environment variables before running the translation code:

export XLA_FLAGS=--xla_gpu_cuda_data_dir=$(path-to-your-cuda-11.8)
export LD_LIBRARY_PATH=$(path-to-your-cuda-11.8)/lib64:${LD_LIBRARY_PATH}

7. Weights and Biases

If you want to use Weights and Biases to track your training runs (via cfg.wandb.enabled=true), you need to ensure your WAND_API_KEY environment variable is set correctly.

8. Test your env

you can execute test_env.py python script to check if the dependencies are installed

python tests/test_env.py

The output (values could be quite different)

CUDA is available!
2.2.0+cu118
11.8
Device count: 1
Current device: 0
Device name: NVIDIA A100-SXM4-40GB
dlib CUDA is available!
Number of dlib CUDA devices: 1