forked from mit-plv/fiat-crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDefinition.v
61 lines (53 loc) · 2.18 KB
/
Definition.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(*** Word-By-Word Montgomery Multiplication *)
(** This file implements Montgomery Form, Montgomery Reduction, and
Montgomery Multiplication on an abstract [T]. See
https://github.com/mit-plv/fiat-crypto/issues/157 for a discussion
of the algorithm; note that it may be that none of the algorithms
there exactly match what we're doing here. *)
Require Import Coq.ZArith.ZArith.
Require Import Crypto.Util.Notations.
Require Import Crypto.Util.LetIn.
Require Import Crypto.Util.ZUtil.Definitions.
Local Open Scope Z_scope.
Section WordByWordMontgomery.
Local Coercion Z.pos : positive >-> Z.
Context
{T : Type}
{eval : T -> Z}
{numlimbs : T -> nat}
{zero : nat -> T}
{divmod : T -> T * Z} (* returns lowest limb and all-but-lowest-limb *)
{r : positive}
{scmul : Z -> T -> T} (* uses double-output multiply *)
{R : positive}
{add : T -> T -> T} (* joins carry *)
{drop_high : T -> T} (* drops the highest limb *)
(N : T).
(* Recurse for a as many iterations as A has limbs, varying A := A, S := 0, r, bounds *)
Section Iteration.
Context (B : T) (k : Z).
Context (A S : T).
(* Given A, B < R, we want to compute A * B / R mod N. R = bound 0 * ... * bound (n-1) *)
Local Definition A_a := dlet p := divmod A in p. Local Definition A' := fst A_a. Local Definition a := snd A_a.
Local Definition S1 := add S (scmul a B).
Local Definition s := snd (divmod S1).
Local Definition q := fst (Z.mul_split r s k).
Local Definition S2 := add S1 (scmul q N).
Local Definition S3 := fst (divmod S2).
Local Definition S4 := drop_high S3.
End Iteration.
Section loop.
Context (A B : T) (k : Z) (S' : T).
Definition redc_body : T * T -> T * T
:= fun '(A, S') => (A' A, S4 B k A S').
Fixpoint redc_loop (count : nat) : T * T -> T * T
:= match count with
| O => fun A_S => A_S
| S count' => fun A_S => redc_loop count' (redc_body A_S)
end.
Definition redc : T
:= snd (redc_loop (numlimbs A) (A, zero (1 + numlimbs B))).
End loop.
End WordByWordMontgomery.
Create HintDb word_by_word_montgomery.
Hint Unfold S4 S3 S2 q s S1 a A' A_a Let_In : word_by_word_montgomery.