-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathoptimize_lens.py
96 lines (79 loc) · 2.5 KB
/
optimize_lens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""Optimize a toy lens model
"""
import torch
import wavetorch
import numpy as np
import skimage
import matplotlib.pyplot as plt
import librosa
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--use_vowel', action='store_true')
args = parser.parse_args()
domain_shape = (151, 151)
dt = 0.707
h = 1.0
sr = 10000
domain = torch.zeros(domain_shape)
rr, cc = skimage.draw.circle( int(domain_shape[0]/2) , int(domain_shape[1]/2), 30)
domain[rr, cc] = 0.5
geom = wavetorch.WaveGeometryFreeForm(domain_shape, h, c0=1.0, c1=0.5, rho=domain, design_region=None)
cell = wavetorch.WaveCell(dt, geom)
# src = wavetorch.WaveSource(25, 75) # Point source
src = wavetorch.WaveLineSource(25, 50, 25, 100) # Line source
probe = [wavetorch.WaveIntensityProbe(125, 100),
wavetorch.WaveIntensityProbe(125, 75),
wavetorch.WaveIntensityProbe(125, 50)]
model = wavetorch.WaveRNN(cell, src, probe)
# Define the source
if args.use_vowel:
x, _, _ = wavetorch.data.load_all_vowels(
['ae', 'ei', 'iy'],
gender='men',
sr=sr,
normalize=True,
max_samples=3)
X = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
X = X[0,1000:3500].unsqueeze(0)
else:
t = np.arange(0, 500*dt, dt)
omega1 = 2*np.pi*1/dt/15
X = np.sin(omega1*t) * t / (1 + t)
X = torch.tensor(X, dtype=torch.get_default_dtype()).unsqueeze(0)
###
optimizer = torch.optim.Adam(model.parameters(), lr=1.5e-3)
criterion = torch.nn.CrossEntropyLoss()
beta_schedule = torch.tensor([100, 400, 800, 1000, 1500, 2000])
beta_schedule_epoch = torch.tensor([-1, 10, 20, 30, 40, 50])
loss_iter = []
for i in range(0, 60):
model.cell.geom.beta = beta_schedule[beta_schedule_epoch<i][-1]
def closure():
optimizer.zero_grad()
u = wavetorch.utils.normalize_power(model(X).sum(dim=1))
loss = criterion(u, torch.tensor([2]))
loss.backward()
return loss
loss = optimizer.step(closure)
model.cell.geom.constrain_to_design_region()
print("Epoch: {} -- Loss: {}".format(i, loss))
loss_iter.append(loss.item())
plt.figure()
plt.plot(loss_iter, 'o-')
plt.xlabel("Epoch")
plt.ylabel("Cross entropy loss")
with torch.no_grad():
u = model(X, output_fields=True)
Nshots = 6
Ntime = X.shape[1]
times = [i for i in range(int(Ntime/Nshots), Ntime, int(Ntime/Nshots))]
wavetorch.plot.field_snapshot(
model,
u,
times,
ylabel=None,
label=True,
cbar=True,
Ny=2,
fig_width=7)
wavetorch.plot.geometry(model)