Skip to content

Latest commit

 

History

History
47 lines (42 loc) · 1.42 KB

README.md

File metadata and controls

47 lines (42 loc) · 1.42 KB

QANet

A Pytorch implementation of QANet
The code is mostly based on the two repositories: hengruo/QANet-pytorch NLPLearn/QANet

Performance

Training epochs / Steps BatchSize HiddenSize Attention Heads EM F1
12.8 / 35,000 32 96 1 69.0 78.6
22 / 60,000 32 96 1 69.7 79.2
12.8 / 93,200 12 128 8 70.3 79.7
22 / 160,160 12 128 8 70.7 80.0

*The results of hidden size 128 with 8 heads were run with 12 batches.

Requirements

  • python 3.6
  • pytorch 0.4.0
  • tqdm
  • spacy 2.0.11
  • tensorboardX
  • absl-py

Usage

Download and preprocess the data

# download SQuAD and Glove
$ sh download.sh
# preprocess
$ python3.6 main.py --mode data

Train the model

# model/model.pt will be generated every epoch
$ python3.6 main.py --mode train

Tensorboard

# Run tensorboard for visualisation
$ tensorboard --logdir ./log/

TODO

  • Add Exponential Moving Average
  • Reach the performance of the paper with hidden size 96, 1 head.
  • Test on hidden size 128, 8 head.