forked from joshua-wu/deepfakes_faceswap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
38 lines (31 loc) · 1.16 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import numpy
from pathlib import Path
from utils import get_image_paths
from model import autoencoder_A
from model import autoencoder_B
from model import encoder, decoder_A, decoder_B
encoder .load_weights( "models/encoder.h5" )
decoder_A.load_weights( "models/decoder_A.h5" )
decoder_B.load_weights( "models/decoder_B.h5" )
images_A = get_image_paths( "data/trump" )
images_B = get_image_paths( "data/cage" )
def convert_one_image( autoencoder, image ):
assert image.shape == (256,256,3)
crop = slice(48,208)
face = image[crop,crop]
face = cv2.resize( face, (64,64) )
face = numpy.expand_dims( face, 0 )
new_face = autoencoder.predict( face / 255.0 )[0]
new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype )
new_face = cv2.resize( new_face, (160,160) )
new_image = image.copy()
new_image[crop,crop] = new_face
return new_image
output_dir = Path( 'output' )
output_dir.mkdir( parents=True, exist_ok=True )
for fn in images_A:
image = cv2.imread(fn)
new_image = convert_one_image( autoencoder_B, image )
output_file = output_dir / Path(fn).name
cv2.imwrite( str(output_file), new_image )