-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_model.py
364 lines (280 loc) · 12.1 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# from apex import amp
import pandas as pd
import utils, os
args = utils.ARArgs()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.CUDA_DEVICE
from pathlib import Path
import tqdm
import data_loader as dl
import pytorch_ssim as torch_ssim
import lpips
import numpy as np
from models import *
from pytorch_unet import *
from render import cv2toTorch, torchToCv2
import cv2
from queue import Queue
from threading import Thread
import shutil
def cat_dim(t1, t2):
return torch.cat([t1, t2], dim=1)
def save_with_cv(pic, imname):
pic = dl.de_normalize(pic.squeeze(0))
npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0)) * 255
npimg = cv2.cvtColor(npimg, cv2.COLOR_BGR2RGB)
cv2.imwrite(imname, npimg)
def evaluate_model(test_dir_prefix, output_generated, video_prefix, filename, from_second=0, to_second=None,
test_lq=True,
skip_model_testing=False, crf=None):
device = 'cuda'
test_tof = False and not skip_model_testing
test_tlp = False and not skip_model_testing
arch_name = args.ARCHITECTURE
dataset_upscale_factor = args.UPSCALE_FACTOR
if arch_name == 'srunet':
model = SRUnet(3, residual=True, scale_factor=dataset_upscale_factor, n_filters=args.N_FILTERS,
downsample=args.DOWNSAMPLE, layer_multiplier=args.LAYER_MULTIPLIER)
elif arch_name == 'unet':
model = UNet(3, residual=True, scale_factor=dataset_upscale_factor, n_filters=args.N_FILTERS)
elif arch_name == 'srgan':
model = SRResNet()
elif arch_name == 'espcn':
model = SimpleResNet(n_filters=64, n_blocks=6)
else:
raise Exception("Unknown architecture. Select one between:", args.archs)
print("Loading model: ", filename)
state_dict = torch.load(filename)
model.load_state_dict(state_dict)
model = model.cuda()
# model = amp.initialize(model, opt_level='O2')
lpips_metric = lpips.LPIPS(net='alex')
lpips_metric = lpips_metric.to(device)
ssim = torch_ssim.SSIM(window_size=11)
ssim = ssim.to(device)
resolution_lq = args.TEST_INPUT_RES
resolution_hq = args.TEST_OUTPUT_RES
if crf is not None:
crf_ = crf
else:
crf_ = 23
lq_file_path = str(test_dir_prefix) + f"/encoded{resolution_lq}CRF{crf_}/" + video_prefix + ".mp4"
cap_lq = cv2.VideoCapture(lq_file_path)
video_size = cap_lq.get(cv2.CAP_PROP_BITRATE) # os.path.getsize(lq_file_path) / 1e6
time_length = cap_lq.get(cv2.CAP_PROP_FRAME_COUNT) / cap_lq.get(cv2.CAP_PROP_FPS)
cap_hq = cv2.VideoCapture(str(test_dir_prefix) + f"/{video_prefix}" + ".y4m")
gaussian_filter = utils.get_gaussian_kernel(sigma=0.5, kernel_size=5)
gaussian_filter.to(device)
lq_queue = Queue(1)
hq_queue = Queue(1)
out_queue = Queue(1)
total_frames = int(cap_hq.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(cap_hq.get(cv2.CAP_PROP_FPS))
from_frame = fps * from_second
to_frame = fps * to_second
if to_frame is None:
to_frame = total_frames
to_frame = min(to_frame, total_frames)
def read_pic(cap, q, from_frame_, to_frame_):
count = 0
cap.set(cv2.CAP_PROP_POS_MSEC, from_second)
while cap.isOpened():
success, cv2_im = cap.read()
if success:
cv2_im = cv2.cvtColor(cv2_im, cv2.COLOR_BGR2RGB)
x = cv2toTorch(cv2_im)
x_bicubic = x # torch.clip(F.interpolate(x, scale_factor=2, mode='bicubic'), min=-1, max=1)
q.put((x, x_bicubic))
count += 1
if count == (to_frame_ - from_frame_):
print("Releasing cap")
cap.release()
else:
cap.release()
finish = False
def save_pic(q):
count = 0
while True:
imname = video_prefix + f"_{count}.png"
frame_name_pattern = imname.split(".")[0].split("_")[:-1]
frame_name_pattern = "_".join(frame_name_pattern) + "_frame"
frame_name_pattern = dest / frame_name_pattern
imname = str(dest / imname)
y_fake = q.get()
if y_fake is not None:
save_with_cv(y_fake, imname)
count += 1
else:
break
ssim_ = []
lpips_ = []
tLP = []
tOF = []
ssim_x = []
lpips_x = []
tLP_x = []
tOF_x = []
print("Evaluation")
tqdm_ = tqdm.tqdm(range(to_frame - from_frame))
dest = test_dir_prefix.split("/")
dest_dir = Path("/".join(dest))
dest = dest_dir / "out"
dest.mkdir(exist_ok=True, parents=True)
border = 0
H_x, W_x = cap_lq.get(cv2.CAP_PROP_FRAME_HEIGHT), cap_lq.get(cv2.CAP_PROP_FRAME_WIDTH)
H_y, W_y = cap_hq.get(cv2.CAP_PROP_FRAME_HEIGHT), cap_hq.get(cv2.CAP_PROP_FRAME_WIDTH)
framerate = int(cap_lq.get(cv2.CAP_PROP_FPS))
H_x = int(H_x)
W_x = int(W_x)
H_y = int(H_y)
W_y = int(W_y)
print(f"Src resolution: {W_x}x{H_x}")
print(f"Dest resolution: {W_y}x{H_y}")
modH, modW = H_x % (16 + border), W_x % (16 + border)
padW = ((16 + border) - modW) % (16 + border)
padH = ((16 + border) - modH) % (16 + border)
new_H = H_x + padH
new_W = W_x + padW
model.batch_size = 1
model.width = new_W # x.shape[-1] + (patch_size - modW) % patch_size
model.height = new_H # x.shape[-2] + (patch_size - modW) % patch_size
print(f"Padded src resolution: {new_W}x{new_H}")
prev_sr = None
prev_gt = None
prev_x = None
thread1 = Thread(target=read_pic, args=(cap_lq, lq_queue, from_frame, to_frame)) # .start()
thread2 = Thread(target=read_pic, args=(cap_hq, hq_queue, from_frame, to_frame)) # .start()
thread3 = Thread(target=save_pic, args=(out_queue,)) # .start()
thread1.start()
thread2.start()
thread3.start()
model = model.eval()
for i in tqdm_:
with torch.no_grad():
y_true, _ = hq_queue.get()
x, x_bicubic = lq_queue.get()
x = F.pad(x, [0, padW, 0, padH])
if not skip_model_testing:
y_fake = model(x)
y_fake = y_fake[:, :, :H_y, :W_y]
if output_generated:
out_queue.put(y_fake)
if not skip_model_testing:
y_true = y_true.to(device)
ssim_loss = ssim(y_fake, y_true).mean()
lpips_loss = lpips_metric(y_fake, y_true).mean()
ssim_ += [float(ssim_loss)]
lpips_ += [float(lpips_loss)]
if prev_gt is not None and not skip_model_testing:
# compute tLP
if test_tlp:
lp_gt = lpips_metric(prev_gt, y_true)
lp_sr = lpips_metric(prev_sr, y_fake)
tlp_step = abs(float(lp_gt - lp_sr))
tLP += [tlp_step]
if test_lq:
x = x[:, :, :H_x, :W_x]
x_rescaled = F.interpolate(x, scale_factor=args.UPSCALE_FACTOR, mode='bicubic')
ssim_loss_x = ssim(x_rescaled, y_true).mean()
lpips_loss_x = lpips_metric(x_rescaled, y_true).mean()
if prev_gt is not None:
prev_x = prev_x[:, :, :H_y, :W_y]
if test_tlp:
lp_gt = lpips_metric(prev_gt, y_true)
lp_x = lpips_metric(prev_x, x_rescaled)
tlp_step = abs(float(lp_gt - lp_x))
tLP_x += [tlp_step]
ssim_x += [float(ssim_loss_x)]
lpips_x += [float(lpips_loss_x)]
prev_gt = y_true.clone()
prev_x = F.interpolate(x.clone(), scale_factor=args.UPSCALE_FACTOR, mode='bicubic')
if not skip_model_testing:
prev_sr = y_fake.clone()
finish = True
out_queue.put(None)
out_dict = {'vid': vid, 'encode_res': resolution_lq, 'dest_res': resolution_hq}
out_dict['ssim'] = np.mean(ssim_)
out_dict['lpips'] = np.mean(lpips_)
out_dict['size'] = video_size
out_dict['time'] = time_length
print("Mean ssim:", np.mean(ssim_))
print("Mean lpips:", np.mean(lpips_))
if test_tlp:
print("Mean tLP:", np.mean(tLP))
out_dict['tLP'] = np.mean(tLP)
if test_tof:
print("Mean tOF:", np.mean(tOF))
out_dict['tOF'] = np.mean(tOF)
if test_lq:
print("Mean ssim_encoded:", np.mean(ssim_x))
print("Mean lpips_encoded:", np.mean(lpips_x))
out_dict['ssim_encoded'] = np.mean(ssim_x)
out_dict['lpips_encoded'] = np.mean(lpips_x)
if test_tlp:
out_dict['tLP_encoded'] = np.mean(tLP_x)
print("Mean tLP H264:", np.mean(tLP_x))
if test_tof:
out_dict['tOF_encoded'] = np.mean(tOF_x)
print("Mean tOF H264:", np.mean(tOF_x))
from_minute = from_second // 60
to_minute = to_second // 60
from_second_ = from_second % 60
to_second_ = to_second % 60
if output_generated and not skip_model_testing:
ffmpeg_command = f"ffmpeg -nostats -loglevel 0 -framerate {fps} -start_number 0 -i\
{test_dir_prefix}/out/{video_prefix}_%d.png -crf 5 -c:v libx264 -r {fps} -pix_fmt yuv420p {dest_dir / 'output_testing.mp4 -y'}"
print("Putting output images together.\n", ffmpeg_command)
os.system(ffmpeg_command)
## test vmaf
vmaf_command = f"./ffmpeg -nostats -loglevel 0\
-r {fps} -i {dest_dir / (video_prefix + '.mp4')} \
-r {fps} -i {dest_dir / 'output_testing.mp4'} \
-ss 00:{from_minute}:{from_second_} -to 00:{to_minute}:{to_second_} \
-lavfi '[0:v]setpts=PTS-STARTPTS[reference]; \
[1:v]scale=-1:{resolution_hq}:flags=bicubic,setpts=PTS-STARTPTS[distorted]; \
[distorted][reference]libvmaf=log_fmt=xml:log_path=/dev/stdout' \
-f null - | grep -i 'aggregateVMAF'"
print(vmaf_command)
out = os.popen(vmaf_command).read()
# parse output
aggregate_vmaf = float(out.split(" ")[2][len('aggregateVMAF="'):-1])
print("VMAF: ", aggregate_vmaf)
out_dict['vmaf'] = aggregate_vmaf
shutil.rmtree(test_dir_prefix + "/out")
if test_lq:
vmaf_command = f"./ffmpeg -nostats -loglevel 0\
-r {fps} -i {dest_dir / (video_prefix + '.mp4')} \
-r {fps} -i {dest_dir / f'encoded{resolution_lq}CRF{crf_}' / (video_prefix + '.mp4')} \
-ss 00:{from_minute}:{from_second_} -to 00:{to_minute}:{to_second_} \
-lavfi '[0:v]setpts=PTS-STARTPTS[reference]; \
[1:v]scale=-1:{resolution_hq}:flags=bicubic,setpts=PTS-STARTPTS[distorted]; \
[distorted][reference]libvmaf=log_fmt=xml:log_path=/dev/stdout' \
-f null - | grep -i 'aggregateVMAF'"
print(vmaf_command)
out = os.popen(vmaf_command).read()
# parse output
aggregate_vmaf_x = float(out.split(" ")[2][len('aggregateVMAF="'):-1])
print("VMAF base: ", aggregate_vmaf_x)
out_dict['vmaf_encoded'] = aggregate_vmaf_x
print("Test completed")
return out_dict
if __name__ == '__main__':
test_dir = Path(args.TEST_DIR)
videos = [vid.strip(".y4m") for vid in os.listdir(test_dir) if vid.endswith('.y4m') and '1080' in vid]
second_start = 0
second_finish = 120 # test no more than the 2nd minutes - none of the test videos last so much
for crf, filename in [
(args.CRF, args.MODEL_NAME),
]:
print(f"Testing CRF {crf}")
output = []
for i, vid in enumerate(videos):
print(f"Testing: {vid}; {i + 1}/{len(videos)}")
dict = evaluate_model(str(test_dir), video_prefix=vid, output_generated=True, filename=filename,
from_second=second_start, test_lq=True, skip_model_testing=False,
to_second=second_finish, crf=crf)
output += [dict]
df = pd.DataFrame(output)
print(df.mean(axis=0, skipna=True))
name = filename.strip(".pkl") + f"_{output[0]['encode_res']}_{output[0]['dest_res']}_TEST_CRF{crf}.csv"
df.to_csv(name)