forked from pythonlessons/TensorFlow-YOLO-v3-Tutorial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load_weights.py
112 lines (88 loc) · 4.13 KB
/
load_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""Loads Yolo v3 pretrained weights and saves them in tensorflow format."""
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import tensorflow as tf
import numpy as np
from yolo_v3 import Yolo_v3
# Reshapes and loads official pretrained Yolo weights.
def load_weights(variables, file_name):
with open(file_name, "rb") as f:
# Skip first 5 values containing irrelevant info
np.fromfile(f, dtype=np.int32, count=5)
weights = np.fromfile(f, dtype=np.float32)
assign_ops = []
ptr = 0
# Load weights for Darknet part.
# Each convolution layer has batch normalization.
for i in range(52):
conv_var = variables[5 * i]
gamma, beta, mean, variance = variables[5 * i + 1:5 * i + 5]
batch_norm_vars = [beta, gamma, mean, variance]
for var in batch_norm_vars:
shape = var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(shape)
ptr += num_params
assign_ops.append(tf.assign(var, var_weights))
shape = conv_var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(
(shape[3], shape[2], shape[0], shape[1]))
var_weights = np.transpose(var_weights, (2, 3, 1, 0))
ptr += num_params
assign_ops.append(tf.assign(conv_var, var_weights))
# Loading weights for Yolo part.
# 7th, 15th and 23rd convolution layer has biases and no batch norm.
ranges = [range(0, 6), range(6, 13), range(13, 20)]
unnormalized = [6, 13, 20]
for j in range(3):
for i in ranges[j]:
current = 52 * 5 + 5 * i + j * 2
conv_var = variables[current]
gamma, beta, mean, variance = \
variables[current + 1:current + 5]
batch_norm_vars = [beta, gamma, mean, variance]
for var in batch_norm_vars:
shape = var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(shape)
ptr += num_params
assign_ops.append(tf.assign(var, var_weights))
shape = conv_var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(
(shape[3], shape[2], shape[0], shape[1]))
var_weights = np.transpose(var_weights, (2, 3, 1, 0))
ptr += num_params
assign_ops.append(tf.assign(conv_var, var_weights))
bias = variables[52 * 5 + unnormalized[j] * 5 + j * 2 + 1]
shape = bias.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(shape)
ptr += num_params
assign_ops.append(tf.assign(bias, var_weights))
conv_var = variables[52 * 5 + unnormalized[j] * 5 + j * 2]
shape = conv_var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(
(shape[3], shape[2], shape[0], shape[1]))
var_weights = np.transpose(var_weights, (2, 3, 1, 0))
ptr += num_params
assign_ops.append(tf.assign(conv_var, var_weights))
return assign_ops
def main():
model = Yolo_v3(n_classes=80, model_size=(416, 416),
max_output_size=5,
iou_threshold=0.5,
confidence_threshold=0.5)
inputs = tf.placeholder(tf.float32, [1, 416, 416, 3])
model(inputs, training=False)
model_vars = tf.global_variables(scope='yolo_v3_model')
assign_ops = load_weights(model_vars, './weights/yolov3.weights')
saver = tf.train.Saver(tf.global_variables(scope='yolo_v3_model'))
with tf.Session() as sess:
sess.run(assign_ops)
saver.save(sess, './weights/model.ckpt')
print('Model has been saved successfully.')
if __name__ == '__main__':
main()