-
Notifications
You must be signed in to change notification settings - Fork 30
/
utils.py
198 lines (156 loc) · 6.26 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import random
import torch
import torch.nn as nn
import numpy as np
import time
from scipy.signal import find_peaks
import wandb
from tqdm import tqdm
def replicate_first_k_frames(x, k, dim):
return torch.cat([x.index_select(dim=dim, index=torch.LongTensor([0] * k).to(x.device)), x], dim=dim)
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class PrintShapeLayer(nn.Module):
def __init__(self):
super(PrintShapeLayer, self).__init__()
def forward(self, x):
print(x.shape)
return x
def length_to_mask(length, max_len=None, dtype=None):
"""length: B.
return B x max_len.
If max_len is None, then max of length will be used.
"""
assert len(length.shape) == 1, 'Length shape should be 1 dimensional.'
max_len = max_len or length.max().item()
mask = torch.arange(max_len, device=length.device,
dtype=length.dtype).expand(len(length), max_len) < length.unsqueeze(1)
if dtype is not None:
mask = torch.as_tensor(mask, dtype=dtype, device=length.device)
return mask
def detect_peaks(x, lengths, prominence=0.1, width=None, distance=None):
"""detect peaks of next_frame_classifier
Arguments:
x {Tensor} -- batch of confidence per time
"""
out = []
for xi, li in zip(x, lengths):
if type(xi) == torch.Tensor:
xi = xi.cpu().detach().numpy()
xi = xi[:li] # shorten to actual length
xmin, xmax = xi.min(), xi.max()
xi = (xi - xmin) / (xmax - xmin)
peaks, _ = find_peaks(xi, prominence=prominence, width=width, distance=distance)
if len(peaks) == 0:
peaks = np.array([len(xi)-1])
out.append(peaks)
return out
class PrecisionRecallMetric:
def __init__(self):
self.precision_counter = 0
self.recall_counter = 0
self.pred_counter = 0
self.gt_counter = 0
self.eps = 1e-5
self.data = []
self.tolerance = 2
self.prominence_range = np.arange(0, 0.15, 0.01)
self.width_range = [None, 1]
self.distance_range = [None, 1]
def get_metrics(self, precision_counter, recall_counter, pred_counter, gt_counter):
EPS = 1e-7
precision = precision_counter / (pred_counter + self.eps)
recall = recall_counter / (gt_counter + self.eps)
f1 = 2 * (precision * recall) / (precision + recall + self.eps)
os = recall / (precision + EPS) - 1
r1 = np.sqrt((1 - recall) ** 2 + os ** 2)
r2 = (-os + recall - 1) / (np.sqrt(2))
rval = 1 - (np.abs(r1) + np.abs(r2)) / 2
return precision, recall, f1, rval
def zero(self):
self.data = []
def update(self, seg, pos_pred, length):
for seg_i, pos_pred_i, length_i in zip(seg, pos_pred, length):
self.data.append((seg_i, pos_pred_i.cpu().detach().numpy(), length_i.item()))
def get_stats(self, width=None, prominence=None, distance=None):
print(f"calculating metrics using {len(self.data)} entries")
max_rval = -float("inf")
best_params = None
segs = list(map(lambda x: x[0], self.data))
length = list(map(lambda x: x[2], self.data))
yhats = list(map(lambda x: x[1], self.data))
width_range = self.width_range
distance_range = self.distance_range
prominence_range = self.prominence_range
# when testing, we would override the search with specific values from validation
if prominence is not None:
width_range = [width]
distance_range = [distance]
prominence_range = [prominence]
for width in width_range:
for prominence in prominence_range:
for distance in distance_range:
precision_counter = 0
recall_counter = 0
pred_counter = 0
gt_counter = 0
peaks = detect_peaks(yhats,
length,
prominence=prominence,
width=width,
distance=distance)
for (y, yhat) in zip(segs, peaks):
for yhat_i in yhat:
min_dist = np.abs(y - yhat_i).min()
precision_counter += (min_dist <= self.tolerance)
for y_i in y:
min_dist = np.abs(yhat - y_i).min()
recall_counter += (min_dist <= self.tolerance)
pred_counter += len(yhat)
gt_counter += len(y)
p, r, f1, rval = self.get_metrics(precision_counter,
recall_counter,
pred_counter,
gt_counter)
if rval > max_rval:
max_rval = rval
best_params = width, prominence, distance
out = (p, r, f1, rval)
self.zero()
print(f"best peak detection params: {best_params} (width, prominence, distance)")
return out, best_params
class StatsMeter:
def __init__(self):
self.data = []
def update(self, item):
if type(item) == list:
self.data.extend(item)
else:
self.data.append(item)
def get_stats(self):
data = np.array(self.data)
mean = data.mean()
self.zero()
return mean
def zero(self):
self.data.clear()
assert len(self.data) == 0, "StatsMeter didn't clear"
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
print(f"{self.msg} -- started")
def __exit__(self, exc_type, exc_value, exc_tb):
print(f"{self.msg} -- done in {(time.time() - self.start_time)} secs")
def max_min_norm(x):
x -= x.min(-1, keepdim=True)[0]
x /= x.max(-1, keepdim=True)[0]
return x
def line():
print(90 * "-")