From 359dcac505aedc679e45ff17c055ea26cdb894e7 Mon Sep 17 00:00:00 2001 From: avahoffman Date: Thu, 18 Jul 2024 11:11:32 -0400 Subject: [PATCH] Tweaks and re-render --- modules/Functions/Functions.Rmd | 272 +- modules/Functions/Functions.html | 694 +- modules/Functions/Functions.pdf | Bin 661718 -> 597379 bytes modules/Functions/clean_data.csv | 8036 ------------------ modules/Functions/lab/Functions_Lab.Rmd | 27 +- modules/Functions/lab/Functions_Lab.html | 56 +- modules/Functions/lab/Functions_Lab_Key.Rmd | 40 +- modules/Functions/lab/Functions_Lab_Key.html | 57 +- 8 files changed, 628 insertions(+), 8554 deletions(-) delete mode 100644 modules/Functions/clean_data.csv diff --git a/modules/Functions/Functions.Rmd b/modules/Functions/Functions.Rmd index fdf7ceab..5e20fb3c 100644 --- a/modules/Functions/Functions.Rmd +++ b/modules/Functions/Functions.Rmd @@ -46,13 +46,13 @@ function_name <- function(arg1, arg2, ...) { Here we will write a function that multiplies some number `x` by 2: ```{r} -times_2 <- function(x) x * 2 +div_100 <- function(x) x / 100 ``` When you run the line of code above, you make it ready to use (no output yet!). Let's test it! ```{r comment=""} -times_2(x = 10) +div_100(x = 600) ``` @@ -61,16 +61,10 @@ times_2(x = 10) Adding the curly brackets - `{}` - allows you to use functions spanning multiple lines: ```{r comment=""} -times_2 <- function(x) { - x * 2 +div_100 <- function(x) { + x / 100 } -times_2(x = 10) - -is_even <- function(x) { - x %% 2 == 0 -} -is_even(x = 11) -is_even(x = times_2(x = 10)) +div_100(x = 10) ``` @@ -79,35 +73,35 @@ is_even(x = times_2(x = 10)) If we want something specific for the function's output, we use `return()`: ```{r comment=""} -times_2_plus_4 <- function(x) { - output_int <- x * 2 +div_100_plus_4 <- function(x) { + output_int <- x / 100 output <- output_int + 4 return(output) } -times_2_plus_4(x = 10) +div_100_plus_4(x = 10) ``` -## Writing your own functions: print intermediate steps + - - printed results do not stay around but can show what a function is doing - - returned results stay around - - can only return one result but can print many - - if `return` not called, last evaluated expression is returned - - `return` should be the last step (steps after may be skipped) + + + + + -## Adding print + -```{r comment=""} -times_2_plus_4 <- function(x) { - output_int <- x * 2 - output <- output_int + 4 - print(paste("times2 result = ", output_int)) - return(output) -} + + + + + + + -result <- times_2_plus_4(x = 10) -result -``` + + + ## Writing your own functions: multiple inputs @@ -115,14 +109,14 @@ result Functions can take multiple inputs: ```{r comment=""} -times_2_plus_y <- function(x, y) x * 2 + y -times_2_plus_y(x = 10, y = 3) +div_100_plus_y <- function(x, y) x / 100 + y +div_100_plus_y(x = 10, y = 3) ``` ## Writing your own functions: multiple outputs -Functions can have one returned result with multiple outputs. +Functions can return a vector (or other object) with multiple outputs. ```{r comment=""} x_and_y_plus_2 <- function(x, y) { @@ -141,9 +135,9 @@ result Functions can have "default" arguments. This lets us use the function without using an argument later: ```{r comment=""} -times_2_plus_y <- function(x = 10, y = 3) x * 2 + y -times_2_plus_y() -times_2_plus_y(x = 11, y = 4) +div_100_plus_y <- function(x = 10, y = 3) x / 100 + y +div_100_plus_y() +div_100_plus_y(x = 11, y = 4) ``` @@ -182,47 +176,41 @@ loud(word = "hooray!") ``` -## Functions for tibbles + -We can use `filter(row_number() == n)` to extract a row of a tibble: + -```{r message=FALSE} -get_row <- function(dat, row) dat %>% filter(row_number() == row) + + -ces <- calenviroscreen -ces_1_8 <- ces %>% select(1:8) -``` + + + -```{r} -get_row(dat = ces, row = 10) -get_row(dat = ces, row = 4) -``` + + + + -## Functions for tibbles - -Can create function with an argument that allows inputting a column name for `select` or other `dplyr` operation: +## Functions for tibbles - curly braces{.codesmall} ```{r} -clean_dataset <- function(dataset, col_name) { - my_data_out <- dataset %>% select({{col_name}}) # Note the curly braces - return(my_data_out) +# get means and missing for a specific column +get_summary <- function(dataset, col_name) { + dataset %>% + summarise(mean = mean({{col_name}}, na.rm = TRUE), + na_count = sum(is.na({{col_name}}))) } - -clean_dataset(dataset = ces, col_name = "CES4.0Score") ``` -```{r} -get_mean <- function(dat, county_name, col_name) { - my_data_out <- dat %>% - filter(str_detect(CaliforniaCounty, county_name)) %>% - summarise(mean = mean({{col_name}}, na.rm = TRUE)) - return(my_data_out) -} -get_mean(dat = ces, county_name = "Alameda", col_name = CES4.0Score) -get_mean(dat = ces, county_name = "Fresno", col_name = CES4.0Score) +Examples: +```{r} +get_summary(calenviroscreen, CES4.0Score) +get_summary(haa5, perc_pop_exposed_to_exceedances) ``` + ## Summary - Simple functions take the form: @@ -251,6 +239,14 @@ These functions take the form: sapply(, some_function) ``` +## CalEnviroScreen + +This dataset was gathered by the California Office of Environmental Health Hazard Assessment. CalEnviroScreen ranks census tracts in California based on potential exposures to pollutants, adverse environmental conditions, socioeconomic factors and the prevalence of certain health conditions. Read more at https://calenviroscreen-oehha.hub.arcgis.com/. + +```{r} +head(calenviroscreen) +``` + ## Using your custom functions: `sapply()` @@ -259,29 +255,40 @@ sapply(, some_function) You can also pipe into your function. ```{r comment=""} -er_visits <- CO_heat_ER - -head(er_visits, n = 2) -sapply(er_visits, class) -er_visits %>% sapply(class) +sapply(calenviroscreen, class) # also: calenviroscreen %>% sapply(class) ``` ## Using your custom functions: `sapply()` +Use the `div_100` function we created earlier to convert 0-100 percentiles to proportions. + ```{r} -select(er_visits, rate:upper95cl) %>% head() -select(er_visits, rate:upper95cl) %>% - sapply(times_2) %>% +calenviroscreen %>% + select(ends_with("Pctl")) %>% + sapply(div_100) %>% head() ``` ## Using your custom functions "on the fly" to iterate +Also called "anonymous function". + +```{r comment=""} +calenviroscreen %>% + select(ends_with("Pctl")) %>% + sapply(function(x) x / 100) %>% + head() +``` + + +## Anonymous functions: alternative syntax + ```{r comment=""} -select(er_visits, rate:upper95cl) %>% - sapply(function(x) x / 1000) %>% +calenviroscreen %>% + select(ends_with("Pctl")) %>% + sapply(\(x) x / 100) %>% head() ``` @@ -292,11 +299,15 @@ select(er_visits, rate:upper95cl) %>% Already know how to use functions to modify columns using `mutate()` or calculate summary statistics using `summarize()`. +- Pesticides - pounds of selected active pesticide / square mile +- Poverty - percent of population living below two times the federal poverty level +- LowBirthWeight - Percent low birth weight + ```{r} -er_visits %>% - mutate(rate_round = round(rate, 2)) %>% - summarize(max_rate_round = max(rate_round, na.rm = T), - max_rate = max(rate, na.rm = T)) +calenviroscreen %>% + summarize(max_pest = max(Pesticides, na.rm = T), + max_pov = max(Poverty, na.rm = T), + low_bw = max(LowBirthWeight, na.rm = T)) ``` @@ -305,16 +316,16 @@ er_visits %>% `across()` makes it easy to apply the same transformation to multiple columns. Usually used with `summarize()` or `mutate()`. ``` -summarize(across( .cols = , .fns = function)) +summarize(across(,function)) ``` or ``` -mutate(across(.cols = , .fns = function)) +mutate(across(,function)) ``` - List columns first : `.cols = ` - List function next: `.fns = ` -- If there are arguments to a function (e.g., `na.rm = TRUE`), the function may need to be modified to an anonymous function, e.g., `\(x) mean(x, na.rm = TRUE)` +- If there are arguments to a function (e.g., `na.rm = TRUE`), use an anonymous function. ## Applying functions with `across` from `dplyr` @@ -322,31 +333,36 @@ mutate(across(.cols = , .fns = function)) Combining with `summarize()` ```{r warning=FALSE} -ces_dbl <- ces %>% select(CaliforniaCounty, CES4.0Score, CES4.0Percentile) - -ces_dbl %>% - summarize(across(.cols = everything(), .fns = mean, na.rm=T)) +calenviroscreen %>% + summarize(across( + c(Pesticides, Poverty, LowBirthWeight), + mean # no parentheses + )) ``` ## Applying functions with `across` from `dplyr` -Can use with other tidyverse functions like `group_by`! +Add anonymous function to include additional arguments (e.g., `na.rm = T`). -```{r} -ces_dbl %>% - group_by(CaliforniaCounty) %>% - summarize(across(.cols = everything(), .fns = mean, na.rm=T)) +```{r warning=FALSE} +calenviroscreen %>% + summarize(across( + c(Pesticides, Poverty, LowBirthWeight), + function(x) mean(x, na.rm = T) + )) ``` - ## Applying functions with `across` from `dplyr` -To add arguments to functions, may need to use anonymous function. In this syntax, the shorthand `\(x)` is equivalent to `function(x)`. +Can use with other tidyverse functions like `group_by`! -```{r warning=FALSE} -ces_dbl %>% - group_by(CaliforniaCounty) %>% - summarize(across(.cols = everything(), .fns = \(x) mean(x, na.rm = TRUE))) +```{r} +calenviroscreen %>% + group_by(CaliforniaCounty) %>% + summarize(across( + c(Pesticides, Poverty, LowBirthWeight), + function(x) mean(x, na.rm = T) + )) ``` @@ -355,24 +371,23 @@ ces_dbl %>% Using different `tidyselect()` options (e.g., `starts_with()`, `ends_with()`, `contains()`) ```{r warning=FALSE} -ces_dbl %>% +calenviroscreen %>% group_by(CaliforniaCounty) %>% - summarize(across(.cols = contains("Perc"), .fns = mean)) + summarize(across(contains("PM"), mean)) ``` -## Applying functions with `across` from `dplyr` + -Combining with `mutate()`: rounding to the nearest power of 10 (with negative digits value) + -```{r} -ces_dbl %>% - mutate(across( - .cols = starts_with("CES"), - .fns = round, - digits = 3 - )) -``` + + + + + + + ## Applying functions with `across` from `dplyr` {.smaller} @@ -389,34 +404,33 @@ or yearly_co2_emissions %>% select(country, starts_with("194")) %>% mutate(across( - .cols = c(`1943`, `1944`, `1945`), - .fns = replace_na, - replace = 0 + c(`1943`, `1944`, `1945`), + function(x) replace_na(x, replace = 0) )) ``` -## Use custom functions within `mutate` and `across` + -If your function needs to span more than one line, better to define it first before using inside `mutate()` and `across()`. + -```{r} -times1000 <- function(x) x * 1000 + + -airquality %>% - mutate(across( - .cols = everything(), - .fns = times1000 - )) %>% - head(n = 2) + + + + + + -airquality %>% - mutate(across( - .cols = everything(), - .fns = function(x) x * 1000 - )) %>% - head(n = 2) -``` + + + + + + + ## `purrr` package diff --git a/modules/Functions/Functions.html b/modules/Functions/Functions.html index 31ea37b6..95011261 100644 --- a/modules/Functions/Functions.html +++ b/modules/Functions/Functions.html @@ -3284,88 +3284,84 @@

Here we will write a function that multiplies some number x by 2:

-
times_2 <- function(x) x * 2
+
div_100 <- function(x) x / 100

When you run the line of code above, you make it ready to use (no output yet!). Let’s test it!

-
times_2(x = 10)
+
div_100(x = 600)
-
[1] 20
+
[1] 6

Writing your own functions: { }

Adding the curly brackets - {} - allows you to use functions spanning multiple lines:

-
times_2 <- function(x) {
-  x * 2
+
div_100 <- function(x) {
+  x / 100
 }
-times_2(x = 10)
+div_100(x = 10)
-
[1] 20
- -
is_even <- function(x) {
-  x %% 2 == 0
-}
-is_even(x = 11)
- -
[1] FALSE
- -
is_even(x = times_2(x = 10))
- -
[1] TRUE
+
[1] 0.1

Writing your own functions: return

If we want something specific for the function’s output, we use return():

-
times_2_plus_4 <- function(x) {
-  output_int <- x * 2
+
div_100_plus_4 <- function(x) {
+  output_int <- x / 100
   output <- output_int + 4
   return(output)
 }
-times_2_plus_4(x = 10)
+div_100_plus_4(x = 10)
-
[1] 24
+
[1] 4.1
-

Writing your own functions: print intermediate steps

+ -
    -
  • printed results do not stay around but can show what a function is doing
  • -
  • returned results stay around
  • -
  • can only return one result but can print many
  • -
  • if return not called, last evaluated expression is returned
  • -
  • return should be the last step (steps after may be skipped)
  • -
+ -

Adding print

+ -
times_2_plus_4 <- function(x) {
-  output_int <- x * 2
-  output <- output_int + 4
-  print(paste("times2 result = ", output_int))
-  return(output)
-}
+
+
+
+
+
+
+
 
-result <- times_2_plus_4(x = 10)
+ -
[1] "times2 result =  20"
+ -
result
+ -
[1] 24
+ + + + + + + + + + + + +

Writing your own functions: multiple inputs

Functions can take multiple inputs:

-
times_2_plus_y <- function(x, y) x * 2 + y
-times_2_plus_y(x = 10, y = 3)
+
div_100_plus_y <- function(x, y) x / 100 + y
+div_100_plus_y(x = 10, y = 3)
-
[1] 23
+
[1] 3.1

Writing your own functions: multiple outputs

-

Functions can have one returned result with multiple outputs.

+

Functions can return a vector (or other object) with multiple outputs.

x_and_y_plus_2 <- function(x, y) {
   output1 <- x + 2
@@ -3382,14 +3378,14 @@ 

Functions can have “default” arguments. This lets us use the function without using an argument later:

-
times_2_plus_y <- function(x = 10, y = 3) x * 2 + y
-times_2_plus_y()
+
div_100_plus_y <- function(x = 10, y = 3) x / 100 + y
+div_100_plus_y()
-
[1] 23
+
[1] 3.1
-
times_2_plus_y(x = 11, y = 4)
+
div_100_plus_y(x = 11, y = 4)
-
[1] 26
+
[1] 4.11

Writing another simple function

@@ -3434,89 +3430,52 @@

[1] "HOORAY!" "HOORAY!" "HOORAY!" "HOORAY!" "HOORAY!"
-

Functions for tibbles

+ -

We can use filter(row_number() == n) to extract a row of a tibble:

+ -
get_row <- function(dat, row) dat %>% filter(row_number() == row)
+
 
-ces <- calenviroscreen
-ces_1_8 <- ces %>% select(1:8)
+ -
get_row(dat = ces, row = 10)
+ -
# A tibble: 1 × 67
-  CensusTract CaliforniaCounty   ZIP Longitude Latitude ApproxLocation
-        <dbl> <chr>            <int>     <dbl>    <dbl> <chr>         
-1  6001401000 "Alameda "       94608     -122.     37.8 Oakland       
-# ℹ 61 more variables: CES4.0Score <dbl>, CES4.0Percentile <dbl>,
-#   CES4.0PercRange <chr>, Ozone <dbl>, OzonePctl <dbl>, PM2.5 <dbl>,
-#   PM2.5.Pctl <dbl>, DieselPM <dbl>, DieselPMPctl <dbl>, DrinkingWater <dbl>,
-#   DrinkingWaterPctl <dbl>, Lead <dbl>, LeadPctl <dbl>, Pesticides <dbl>,
-#   PesticidesPctl <dbl>, ToxRelease <dbl>, ToxReleasePctl <dbl>,
-#   Traffic <dbl>, TrafficPctl <dbl>, CleanupSites <dbl>,
-#   CleanupSitesPctl <dbl>, GroundwaterThreats <dbl>, …
+ -
get_row(dat = ces, row = 4)
+ -
# A tibble: 1 × 67
-  CensusTract CaliforniaCounty   ZIP Longitude Latitude ApproxLocation
-        <dbl> <chr>            <int>     <dbl>    <dbl> <chr>         
-1  6001400400 "Alameda "       94609     -122.     37.8 Oakland       
-# ℹ 61 more variables: CES4.0Score <dbl>, CES4.0Percentile <dbl>,
-#   CES4.0PercRange <chr>, Ozone <dbl>, OzonePctl <dbl>, PM2.5 <dbl>,
-#   PM2.5.Pctl <dbl>, DieselPM <dbl>, DieselPMPctl <dbl>, DrinkingWater <dbl>,
-#   DrinkingWaterPctl <dbl>, Lead <dbl>, LeadPctl <dbl>, Pesticides <dbl>,
-#   PesticidesPctl <dbl>, ToxRelease <dbl>, ToxReleasePctl <dbl>,
-#   Traffic <dbl>, TrafficPctl <dbl>, CleanupSites <dbl>,
-#   CleanupSitesPctl <dbl>, GroundwaterThreats <dbl>, …
+ -

Functions for tibbles

+ -

Can create function with an argument that allows inputting a column name for select or other dplyr operation:

+ -
clean_dataset <- function(dataset, col_name) {
-  my_data_out <- dataset %>% select({{col_name}}) # Note the curly braces
-  return(my_data_out)
-}
+
 
-clean_dataset(dataset = ces, col_name = "CES4.0Score")
+

Functions for tibbles - curly braces

-
# A tibble: 8,035 × 1
-   CES4.0Score
-         <dbl>
- 1        4.85
- 2        4.88
- 3       11.2 
- 4       12.4 
- 5       16.7 
- 6       20.0 
- 7       36.7 
- 8       37.1 
- 9       40.7 
-10       43.7 
-# ℹ 8,025 more rows
+
# get means and missing for a specific column
+get_summary <- function(dataset, col_name) {
+    dataset %>%  
+    summarise(mean = mean({{col_name}}, na.rm = TRUE),
+              na_count = sum(is.na({{col_name}})))
+}
-
get_mean <- function(dat, county_name, col_name) {
-  my_data_out <- dat %>% 
-    filter(str_detect(CaliforniaCounty, county_name)) %>%  
-    summarise(mean = mean({{col_name}}, na.rm = TRUE))
-    return(my_data_out)
-}
+

Examples:

-get_mean(dat = ces, county_name = "Alameda", col_name = CES4.0Score)
+
get_summary(calenviroscreen, CES4.0Score)
-
# A tibble: 1 × 1
-   mean
-  <dbl>
-1  22.9
+
# A tibble: 1 × 2
+   mean na_count
+  <dbl>    <int>
+1  28.3      103
-
get_mean(dat = ces, county_name = "Fresno", col_name = CES4.0Score)
+
get_summary(haa5, perc_pop_exposed_to_exceedances)
-
# A tibble: 1 × 1
-   mean
-  <dbl>
-1  40.9
+
# A tibble: 1 × 2
+    mean na_count
+   <dbl>    <int>
+1 0.0591       11

Summary

@@ -3546,75 +3505,237 @@

sapply(<a vector, list, data frame>, some_function)
-

Using your custom functions: sapply()

- -

🚨 There are no parentheses on the functions! 🚨

- -

You can also pipe into your function.

+

CalEnviroScreen

-
er_visits <- CO_heat_ER
+

This dataset was gathered by the California Office of Environmental Health Hazard Assessment. CalEnviroScreen ranks census tracts in California based on potential exposures to pollutants, adverse environmental conditions, socioeconomic factors and the prevalence of certain health conditions. Read more at https://calenviroscreen-oehha.hub.arcgis.com/.

-head(er_visits, n = 2)
+
head(calenviroscreen)
-
# A tibble: 2 × 7
-  county     rate lower95cl upper95cl visits  year gender
-  <chr>     <dbl>     <dbl>     <dbl>  <dbl> <dbl> <chr> 
-1 Statewide  5.64      4.70      6.59    140  2011 Female
-2 Statewide  7.39      6.30      8.47    183  2011 Male  
+
# A tibble: 6 × 67
+  CensusTract CaliforniaCounty   ZIP Longitude Latitude ApproxLocation
+        <dbl> <chr>            <int>     <dbl>    <dbl> <chr>         
+1  6001400100 "Alameda "       94704     -122.     37.9 Oakland       
+2  6001400200 "Alameda "       94618     -122.     37.8 Oakland       
+3  6001400300 "Alameda "       94618     -122.     37.8 Oakland       
+4  6001400400 "Alameda "       94609     -122.     37.8 Oakland       
+5  6001400500 "Alameda "       94609     -122.     37.8 Oakland       
+6  6001400600 "Alameda "       94609     -122.     37.8 Oakland       
+# ℹ 61 more variables: CES4.0Score <dbl>, CES4.0Percentile <dbl>,
+#   CES4.0PercRange <chr>, Ozone <dbl>, OzonePctl <dbl>, PM2.5 <dbl>,
+#   PM2.5.Pctl <dbl>, DieselPM <dbl>, DieselPMPctl <dbl>, DrinkingWater <dbl>,
+#   DrinkingWaterPctl <dbl>, Lead <dbl>, LeadPctl <dbl>, Pesticides <dbl>,
+#   PesticidesPctl <dbl>, ToxRelease <dbl>, ToxReleasePctl <dbl>,
+#   Traffic <dbl>, TrafficPctl <dbl>, CleanupSites <dbl>,
+#   CleanupSitesPctl <dbl>, GroundwaterThreats <dbl>, …
-
sapply(er_visits, class)
+

Using your custom functions: sapply()

-
     county        rate   lower95cl   upper95cl      visits        year 
-"character"   "numeric"   "numeric"   "numeric"   "numeric"   "numeric" 
-     gender 
-"character" 
+

🚨 There are no parentheses on the functions! 🚨

-
er_visits %>% sapply(class)
+

You can also pipe into your function.

-
     county        rate   lower95cl   upper95cl      visits        year 
-"character"   "numeric"   "numeric"   "numeric"   "numeric"   "numeric" 
-     gender 
-"character" 
+
sapply(calenviroscreen, class) # also: calenviroscreen %>% sapply(class)
+ +
              CensusTract          CaliforniaCounty                       ZIP 
+                "numeric"               "character"                 "integer" 
+                Longitude                  Latitude            ApproxLocation 
+                "numeric"                 "numeric"               "character" 
+              CES4.0Score          CES4.0Percentile           CES4.0PercRange 
+                "numeric"                 "numeric"               "character" 
+                    Ozone                 OzonePctl                     PM2.5 
+                "numeric"                 "numeric"                 "numeric" 
+               PM2.5.Pctl                  DieselPM              DieselPMPctl 
+                "numeric"                 "numeric"                 "numeric" 
+            DrinkingWater         DrinkingWaterPctl                      Lead 
+                "numeric"                 "numeric"                 "numeric" 
+                 LeadPctl                Pesticides            PesticidesPctl 
+                "numeric"                 "numeric"                 "numeric" 
+               ToxRelease            ToxReleasePctl                   Traffic 
+                "numeric"                 "numeric"                 "numeric" 
+              TrafficPctl              CleanupSites          CleanupSitesPctl 
+                "numeric"                 "numeric"                 "numeric" 
+       GroundwaterThreats    GroundwaterThreatsPctl                  HazWaste 
+                "numeric"                 "numeric"                 "numeric" 
+             HazWastePctl            ImpWaterBodies        ImpWaterBodiesPctl 
+                "numeric"                 "integer"                 "numeric" 
+               SolidWaste            SolidWastePctl           PollutionBurden 
+                "numeric"                 "numeric"                 "numeric" 
+     PollutionBurdenScore       PollutionBurdenPctl                    Asthma 
+                "numeric"                 "numeric"                 "numeric" 
+               AsthmaPctl            LowBirthWeight        LowBirthWeightPctl 
+                "numeric"                 "numeric"                 "numeric" 
+    CardiovascularDisease CardiovascularDiseasePctl                  TotalPop 
+                "numeric"                 "numeric"                 "integer" 
+       ChildrenPercLess10             PopPerc10to64             ElderlyMore64 
+                "numeric"                 "numeric"                 "numeric" 
+             HispanicPerc                 WhitePerc            AfAmericanPerc 
+                "numeric"                 "numeric"                 "numeric" 
+       NativeAmericanPerc         AsianAmericanPerc         OtherMultiplePerc 
+                "numeric"                 "numeric"                 "numeric" 
+                  PopChar              PopCharScore               PopCharPctl 
+                "numeric"                 "numeric"                 "numeric" 
+                Education             EducationPctl            LinguisticIsol 
+                "numeric"                 "numeric"                 "numeric" 
+       LinguisticIsolPctl                   Poverty               PovertyPctl 
+                "numeric"                 "numeric"                 "numeric" 
+             Unemployment          UnemploymentPctl             HousingBurden 
+                "numeric"                 "numeric"                 "numeric" 
+        HousingBurdenPctl 
+                "numeric" 

Using your custom functions: sapply()

-
select(er_visits, rate:upper95cl) %>% head()
- -
# A tibble: 6 × 3
-   rate lower95cl upper95cl
-  <dbl>     <dbl>     <dbl>
-1  5.64      4.70      6.59
-2  7.39      6.30      8.47
-3  6.51      5.80      7.23
-4  5.64      4.72      6.57
-5  7.56      6.48      8.65
-6  6.58      5.88      7.29
+

Use the div_100 function we created earlier to convert 0-100 percentiles to proportions.

-
select(er_visits, rate:upper95cl) %>%
-  sapply(times_2) %>%
+
calenviroscreen %>%
+  select(ends_with("Pctl")) %>%
+  sapply(div_100) %>%
   head()
-
         rate lower95cl upper95cl
-[1,] 11.28546  9.395283  13.17564
-[2,] 14.77374 12.597645  16.94983
-[3,] 13.02989 11.593179  14.46660
-[4,] 11.28268  9.430621  13.13474
-[5,] 15.12880 12.959418  17.29817
-[6,] 13.16714 11.750214  14.58407
+
     OzonePctl PM2.5.Pctl DieselPMPctl DrinkingWaterPctl LeadPctl
+[1,]    0.0312     0.3627       0.3476            0.0421   0.0774
+[2,]    0.0312     0.4197       0.9271            0.0421   0.6820
+[3,]    0.0312     0.4390       0.8977            0.0421   0.6418
+[4,]    0.0312     0.4281       0.7910            0.0421   0.6708
+[5,]    0.0312     0.4281       0.6758            0.0421   0.6795
+[6,]    0.0312     0.4281       0.8376            0.0421   0.6970
+     PesticidesPctl ToxReleasePctl TrafficPctl CleanupSitesPctl
+[1,]              0         0.5603      0.5594           0.5817
+[2,]              0         0.5543      0.3749           0.0000
+[3,]              0         0.5504      0.4248           0.1183
+[4,]              0         0.5590      0.3800           0.0000
+[5,]              0         0.5648      0.4868           0.3387
+[6,]              0         0.5565      0.6706           0.2262
+     GroundwaterThreatsPctl HazWastePctl ImpWaterBodiesPctl SolidWastePctl
+[1,]                 0.5242       0.9252             0.2388         0.3572
+[2,]                 0.8793       0.2851             0.0000         0.0000
+[3,]                 0.8529       0.7407             0.0000         0.0000
+[4,]                 0.9256       0.5189             0.0000         0.0000
+[5,]                 0.8434       0.5640             0.0000         0.0000
+[6,]                 0.7906       0.5827             0.0000         0.0000
+     PollutionBurdenPctl AsthmaPctl LowBirthWeightPctl
+[1,]              0.2662     0.0444             0.2306
+[2,]              0.2418     0.0980             0.2792
+[3,]              0.3337     0.2657             0.2162
+[4,]              0.2624     0.5598             0.3702
+[5,]              0.3140     0.8838             0.1900
+[6,]              0.3694     0.9307             0.0503
+     CardiovascularDiseasePctl PopCharPctl EducationPctl LinguisticIsolPctl
+[1,]                    0.0142      0.0153        0.1255             0.0849
+[2,]                    0.1453      0.0165        0.0042             0.0000
+[3,]                    0.2011      0.1227        0.2412             0.5336
+[4,]                    0.1428      0.1843        0.2029             0.0564
+[5,]                    0.3887      0.3016        0.0740             0.1330
+[6,]                    0.5278      0.3770        0.0973             0.0627
+     PovertyPctl UnemploymentPctl HousingBurdenPctl
+[1,]      0.1103               NA            0.1939
+[2,]      0.1144           0.1711            0.0067
+[3,]      0.1090           0.2941            0.0981
+[4,]      0.3642           0.1066            0.3748
+[5,]      0.3813           0.2820            0.3748
+[6,]      0.2442           0.7167            0.5407

Using your custom functions “on the fly” to iterate

-
select(er_visits, rate:upper95cl) %>%
-  sapply(function(x) x / 1000) %>%
+

Also called “anonymous function”.

+ +
calenviroscreen %>%
+  select(ends_with("Pctl")) %>%
+  sapply(function(x) x / 100) %>%
   head()
-
            rate   lower95cl   upper95cl
-[1,] 0.005642730 0.004697642 0.006587819
-[2,] 0.007386868 0.006298822 0.008474914
-[3,] 0.006514945 0.005796590 0.007233300
-[4,] 0.005641341 0.004715311 0.006567371
-[5,] 0.007564398 0.006479709 0.008649086
-[6,] 0.006583570 0.005875107 0.007292033
+
     OzonePctl PM2.5.Pctl DieselPMPctl DrinkingWaterPctl LeadPctl
+[1,]    0.0312     0.3627       0.3476            0.0421   0.0774
+[2,]    0.0312     0.4197       0.9271            0.0421   0.6820
+[3,]    0.0312     0.4390       0.8977            0.0421   0.6418
+[4,]    0.0312     0.4281       0.7910            0.0421   0.6708
+[5,]    0.0312     0.4281       0.6758            0.0421   0.6795
+[6,]    0.0312     0.4281       0.8376            0.0421   0.6970
+     PesticidesPctl ToxReleasePctl TrafficPctl CleanupSitesPctl
+[1,]              0         0.5603      0.5594           0.5817
+[2,]              0         0.5543      0.3749           0.0000
+[3,]              0         0.5504      0.4248           0.1183
+[4,]              0         0.5590      0.3800           0.0000
+[5,]              0         0.5648      0.4868           0.3387
+[6,]              0         0.5565      0.6706           0.2262
+     GroundwaterThreatsPctl HazWastePctl ImpWaterBodiesPctl SolidWastePctl
+[1,]                 0.5242       0.9252             0.2388         0.3572
+[2,]                 0.8793       0.2851             0.0000         0.0000
+[3,]                 0.8529       0.7407             0.0000         0.0000
+[4,]                 0.9256       0.5189             0.0000         0.0000
+[5,]                 0.8434       0.5640             0.0000         0.0000
+[6,]                 0.7906       0.5827             0.0000         0.0000
+     PollutionBurdenPctl AsthmaPctl LowBirthWeightPctl
+[1,]              0.2662     0.0444             0.2306
+[2,]              0.2418     0.0980             0.2792
+[3,]              0.3337     0.2657             0.2162
+[4,]              0.2624     0.5598             0.3702
+[5,]              0.3140     0.8838             0.1900
+[6,]              0.3694     0.9307             0.0503
+     CardiovascularDiseasePctl PopCharPctl EducationPctl LinguisticIsolPctl
+[1,]                    0.0142      0.0153        0.1255             0.0849
+[2,]                    0.1453      0.0165        0.0042             0.0000
+[3,]                    0.2011      0.1227        0.2412             0.5336
+[4,]                    0.1428      0.1843        0.2029             0.0564
+[5,]                    0.3887      0.3016        0.0740             0.1330
+[6,]                    0.5278      0.3770        0.0973             0.0627
+     PovertyPctl UnemploymentPctl HousingBurdenPctl
+[1,]      0.1103               NA            0.1939
+[2,]      0.1144           0.1711            0.0067
+[3,]      0.1090           0.2941            0.0981
+[4,]      0.3642           0.1066            0.3748
+[5,]      0.3813           0.2820            0.3748
+[6,]      0.2442           0.7167            0.5407
+ +

Anonymous functions: alternative syntax

+ +
calenviroscreen %>%
+  select(ends_with("Pctl")) %>%
+  sapply(\(x) x / 100) %>%
+  head()
+ +
     OzonePctl PM2.5.Pctl DieselPMPctl DrinkingWaterPctl LeadPctl
+[1,]    0.0312     0.3627       0.3476            0.0421   0.0774
+[2,]    0.0312     0.4197       0.9271            0.0421   0.6820
+[3,]    0.0312     0.4390       0.8977            0.0421   0.6418
+[4,]    0.0312     0.4281       0.7910            0.0421   0.6708
+[5,]    0.0312     0.4281       0.6758            0.0421   0.6795
+[6,]    0.0312     0.4281       0.8376            0.0421   0.6970
+     PesticidesPctl ToxReleasePctl TrafficPctl CleanupSitesPctl
+[1,]              0         0.5603      0.5594           0.5817
+[2,]              0         0.5543      0.3749           0.0000
+[3,]              0         0.5504      0.4248           0.1183
+[4,]              0         0.5590      0.3800           0.0000
+[5,]              0         0.5648      0.4868           0.3387
+[6,]              0         0.5565      0.6706           0.2262
+     GroundwaterThreatsPctl HazWastePctl ImpWaterBodiesPctl SolidWastePctl
+[1,]                 0.5242       0.9252             0.2388         0.3572
+[2,]                 0.8793       0.2851             0.0000         0.0000
+[3,]                 0.8529       0.7407             0.0000         0.0000
+[4,]                 0.9256       0.5189             0.0000         0.0000
+[5,]                 0.8434       0.5640             0.0000         0.0000
+[6,]                 0.7906       0.5827             0.0000         0.0000
+     PollutionBurdenPctl AsthmaPctl LowBirthWeightPctl
+[1,]              0.2662     0.0444             0.2306
+[2,]              0.2418     0.0980             0.2792
+[3,]              0.3337     0.2657             0.2162
+[4,]              0.2624     0.5598             0.3702
+[5,]              0.3140     0.8838             0.1900
+[6,]              0.3694     0.9307             0.0503
+     CardiovascularDiseasePctl PopCharPctl EducationPctl LinguisticIsolPctl
+[1,]                    0.0142      0.0153        0.1255             0.0849
+[2,]                    0.1453      0.0165        0.0042             0.0000
+[3,]                    0.2011      0.1227        0.2412             0.5336
+[4,]                    0.1428      0.1843        0.2029             0.0564
+[5,]                    0.3887      0.3016        0.0740             0.1330
+[6,]                    0.5278      0.3770        0.0973             0.0627
+     PovertyPctl UnemploymentPctl HousingBurdenPctl
+[1,]      0.1103               NA            0.1939
+[2,]      0.1144           0.1711            0.0067
+[3,]      0.1090           0.2941            0.0981
+[4,]      0.3642           0.1066            0.3748
+[5,]      0.3813           0.2820            0.3748
+[6,]      0.2442           0.7167            0.5407

across

@@ -3622,142 +3743,136 @@

Already know how to use functions to modify columns using mutate() or calculate summary statistics using summarize().

-
er_visits %>%
-  mutate(rate_round = round(rate, 2)) %>%
-  summarize(max_rate_round = max(rate_round, na.rm = T),
-            max_rate = max(rate, na.rm = T))
+
    +
  • Pesticides - pounds of selected active pesticide / square mile
  • +
  • Poverty - percent of population living below two times the federal poverty level
  • +
  • LowBirthWeight - Percent low birth weight
  • +
-
# A tibble: 1 × 2
-  max_rate_round max_rate
-           <dbl>    <dbl>
-1           89.3     89.3
+
calenviroscreen %>%
+  summarize(max_pest = max(Pesticides, na.rm = T),
+            max_pov = max(Poverty, na.rm = T),
+            low_bw = max(LowBirthWeight, na.rm = T))
+ +
# A tibble: 1 × 3
+  max_pest max_pov low_bw
+     <dbl>   <dbl>  <dbl>
+1   80811.    96.7   13.7

Applying functions with across from dplyr

across() makes it easy to apply the same transformation to multiple columns. Usually used with summarize() or mutate().

-
summarize(across( .cols = <columns>, .fns = function)) 
+
summarize(across(<columns>,function)) 

or

-
mutate(across(.cols = <columns>, .fns = function))
+
mutate(across(<columns>,function))
  • List columns first : .cols =
  • List function next: .fns =
  • -
  • If there are arguments to a function (e.g., na.rm = TRUE), the function may need to be modified to an anonymous function, e.g., \(x) mean(x, na.rm = TRUE)
  • +
  • If there are arguments to a function (e.g., na.rm = TRUE), use an anonymous function.

Applying functions with across from dplyr

Combining with summarize()

-
ces_dbl <- ces %>% select(CaliforniaCounty, CES4.0Score, CES4.0Percentile)
-
-ces_dbl %>%
-  summarize(across(.cols = everything(), .fns = mean, na.rm=T))
+
calenviroscreen %>%
+  summarize(across(
+    c(Pesticides, Poverty, LowBirthWeight),
+    mean # no parentheses
+  ))
# A tibble: 1 × 3
-  CaliforniaCounty CES4.0Score CES4.0Percentile
-             <dbl>       <dbl>            <dbl>
-1               NA        28.3             50.0
+ Pesticides Poverty LowBirthWeight + <dbl> <dbl> <dbl> +1 268. NA NA

Applying functions with across from dplyr

-

Can use with other tidyverse functions like group_by!

+

Add anonymous function to include additional arguments (e.g., na.rm = T).

-
ces_dbl %>%
-  group_by(CaliforniaCounty) %>%
-  summarize(across(.cols = everything(), .fns = mean, na.rm=T))
- -
# A tibble: 58 × 3
-   CaliforniaCounty CES4.0Score CES4.0Percentile
-   <chr>                  <dbl>            <dbl>
- 1 "Alameda "              22.9             41.3
- 2 "Alpine "               13.6             22  
- 3 "Amador "               20.7             38.8
- 4 "Butte "                21.7             39.8
- 5 "Calaveras "            16.1             28.0
- 6 "Colusa "               27.0             52.2
- 7 "Contra Costa"          21.0             36.7
- 8 "Del Norte"             21.4             40.3
- 9 "El Dorado"             10.2             14.6
-10 "Fresno "               40.9             69.5
-# ℹ 48 more rows
+
calenviroscreen %>%
+  summarize(across(
+    c(Pesticides, Poverty, LowBirthWeight),
+    function(x) mean(x, na.rm = T)
+  ))
+ +
# A tibble: 1 × 3
+  Pesticides Poverty LowBirthWeight
+       <dbl>   <dbl>          <dbl>
+1       268.    31.3           5.00

Applying functions with across from dplyr

-

To add arguments to functions, may need to use anonymous function. In this syntax, the shorthand \(x) is equivalent to function(x).

+

Can use with other tidyverse functions like group_by!

-
ces_dbl %>%
-  group_by(CaliforniaCounty) %>%
-  summarize(across(.cols = everything(), .fns = \(x) mean(x, na.rm = TRUE)))
- -
# A tibble: 58 × 3
-   CaliforniaCounty CES4.0Score CES4.0Percentile
-   <chr>                  <dbl>            <dbl>
- 1 "Alameda "              22.9             41.3
- 2 "Alpine "               13.6             22  
- 3 "Amador "               20.7             38.8
- 4 "Butte "                21.7             39.8
- 5 "Calaveras "            16.1             28.0
- 6 "Colusa "               27.0             52.2
- 7 "Contra Costa"          21.0             36.7
- 8 "Del Norte"             21.4             40.3
- 9 "El Dorado"             10.2             14.6
-10 "Fresno "               40.9             69.5
+
calenviroscreen %>%
+  group_by(CaliforniaCounty) %>% 
+  summarize(across(
+    c(Pesticides, Poverty, LowBirthWeight),
+    function(x) mean(x, na.rm = T)
+  ))
+ +
# A tibble: 58 × 4
+   CaliforniaCounty Pesticides Poverty LowBirthWeight
+   <chr>                 <dbl>   <dbl>          <dbl>
+ 1 "Alameda "            0.948    22.1           5.26
+ 2 "Alpine "             0        38.9         NaN   
+ 3 "Amador "             2.01     25.2           4.45
+ 4 "Butte "            736.       39.9           4.64
+ 5 "Calaveras "          1.20     28.2           3.55
+ 6 "Colusa "          1186.       36.5           4.11
+ 7 "Contra Costa"       10.5      20.6           4.71
+ 8 "Del Norte"          47.4      48.4         NaN   
+ 9 "El Dorado"           5.50     20.9           4.28
+10 "Fresno "           586.       45.8           5.96
 # ℹ 48 more rows

Applying functions with across from dplyr

Using different tidyselect() options (e.g., starts_with(), ends_with(), contains())

-
ces_dbl %>%
+
calenviroscreen %>% 
   group_by(CaliforniaCounty) %>%
-  summarize(across(.cols = contains("Perc"), .fns = mean))
- -
# A tibble: 58 × 2
-   CaliforniaCounty CES4.0Percentile
-   <chr>                       <dbl>
- 1 "Alameda "                   NA  
- 2 "Alpine "                    22  
- 3 "Amador "                    38.8
- 4 "Butte "                     39.8
- 5 "Calaveras "                 NA  
- 6 "Colusa "                    52.2
- 7 "Contra Costa"               36.7
- 8 "Del Norte"                  40.3
- 9 "El Dorado"                  14.6
-10 "Fresno "                    NA  
+  summarize(across(contains("PM"), mean))
+ +
# A tibble: 58 × 5
+   CaliforniaCounty PM2.5 PM2.5.Pctl DieselPM DieselPMPctl
+   <chr>            <dbl>      <dbl>    <dbl>        <dbl>
+ 1 "Alameda "        8.87      31.9    0.350         66.4 
+ 2 "Alpine "         3.05       0.07   0.003          1.02
+ 3 "Amador "         8.01      18.9    0.0111         4.18
+ 4 "Butte "          8.22      23.0    0.106         33.1 
+ 5 "Calaveras "      8.12      22.6    0.0079         3.08
+ 6 "Colusa "         7.54      13.3    0.0292        10.6 
+ 7 "Contra Costa"    8.76      31.0    0.210         48.6 
+ 8 "Del Norte"       5.71       2.93   0.0301        11.1 
+ 9 "El Dorado"       6.78       8.91   0.0380        13.6 
+10 "Fresno "        13.2       91.4    0.181         44.8 
 # ℹ 48 more rows
-

Applying functions with across from dplyr

+ -

Combining with mutate(): rounding to the nearest power of 10 (with negative digits value)

+ -
ces_dbl %>%
-  mutate(across(
-    .cols = starts_with("CES"),
-    .fns = round,
-    digits = 3
-  ))
+ + + -
# A tibble: 8,035 × 3
-   CaliforniaCounty CES4.0Score CES4.0Percentile
-   <chr>                  <dbl>            <dbl>
- 1 "Alameda "              4.85             2.8 
- 2 "Alameda "              4.88             2.87
- 3 "Alameda "             11.2             15.9 
- 4 "Alameda "             12.4             19.0 
- 5 "Alameda "             16.7             29.7 
- 6 "Alameda "             20.0             37.6 
- 7 "Alameda "             36.7             70.1 
- 8 "Alameda "             37.1             70.7 
- 9 "Alameda "             40.7             76.2 
-10 "Alameda "             43.7             80.4 
-# ℹ 8,025 more rows
- -

Applying functions with across from dplyr

+ + + + + + + + + + +

Applying functions with across from dplyr

Combining with mutate() - the replace_na function

@@ -3768,9 +3883,8 @@

yearly_co2_emissions %>%
   select(country, starts_with("194")) %>%
   mutate(across(
-    .cols = c(`1943`, `1944`, `1945`),
-    .fns = replace_na,
-    replace = 0
+    c(`1943`, `1944`, `1945`),
+    function(x) replace_na(x, replace = 0)
   ))
# A tibble: 192 × 11
@@ -3789,33 +3903,39 @@ 

# ℹ 182 more rows # ℹ 1 more variable: `1949` <dbl>
-

Use custom functions within mutate and across

+ -

If your function needs to span more than one line, better to define it first before using inside mutate() and across().

+ -
times1000 <- function(x) x * 1000
+
 
-airquality %>%
-  mutate(across(
-    .cols = everything(),
-    .fns  = times1000
-  )) %>%
-  head(n = 2)
+ -
  Ozone Solar.R Wind  Temp Month  Day
-1 41000  190000 7400 67000  5000 1000
-2 36000  118000 8000 72000  5000 2000
+ -
airquality %>%
-  mutate(across(
-    .cols = everything(),
-    .fns  = function(x) x * 1000
-  )) %>%
-  head(n = 2)
- -
  Ozone Solar.R Wind  Temp Month  Day
-1 41000  190000 7400 67000  5000 1000
-2 36000  118000 8000 72000  5000 2000
+ + + + + + + + + + + + + + + + + + + + + + +

purrr package

diff --git a/modules/Functions/Functions.pdf b/modules/Functions/Functions.pdf index d460868cbd862155d83ff835ebf1175a233a1c76..a27d537e759b587d8fd9d563cea5e9a395e717f4 100644 GIT binary patch delta 182656 zcmY)VW02=u`~877r!{Tcwr$&-wr%U%wr$(CZQHi(Ideb%I_K0cudZb8q$;V@C+k{! zWu=}Xu#+Ut5rTt}m63sgCEf$)|6BTJHD>{{&H$MB_z0Yw9Zd{upxv{sH8yRr*%5qp zYxm%tdDwS=1_ekr1@S>x{QX|GZM0D&BisJMqjXhCNNJI&Jt{T*>M961O5aQ;RPRH2 z%oPkg;Xdo(GJJfpc<++Pp`I<3hdJs0WH0%xo0FQ!ZkY3T0$C)COoN5KmkvM0ZSs@` zRS>{p%_`J1WN}0OIGP|bKt`CrioXaURL94mD4Zv^yuKF&VSpC1LLq??&gWcMT0HHR z$yN3{_QV1a&f<;{mMBh1qQ$}3e#fboJKtY;G>~W?qc7rkhGZXua0J6MdR?! zfO=qju#fH(X>OB40D`Y`XCw6LF(7DsalDcW3%L@CXW;~z3=8~gSc`_ps{*6=Ajrd-^H(fzhFZaz`msB4uJ^K%$fsTbU0*UM_*_)wEziM=pB5G9q%kkgP`)G zSi)xHp;=EGq0H~aK|?@f_+du&P!6~|eh=#RHfD%7aFa4fNFMAGUb2_ThXxxB$krnS z=OR5d?h;=bedwL2qIJC7)LQ<)REAF2q-=AM)tVGdVN9@Ae<^ZEF<4K1!g-Zg?yeo_ z>{wCdxw0;Rvks*9n^KNwOYB$JNSaTLCz z9X3%~OdU!sqN2DZXKZavTLHZDU%7N?SD(G8N_mOqU2nF~9ZwInzGA8Ee<8yg$#0^6 zKy#pG%Dt=Rv3-rFw%!m4!GOlWc5f& z_V2!{#YU~!S_haI5PgV~Gj+xx#peb54T!JE4B7sg!N_IP59MgR4RvEPOX4ucJ?pAy z@_k!iGK_t$_kJUFx&ZZKIJP!H59j?@U^vY!}NDoNLoCk zvK`k8?wh12!77CQ_eGTdQKIwMPBS#0Beh=z3b{3S5jYtbz{te*f2p-@Ny3ieQ(HR+ zfAnFy(T8#HB82zrAfM2~jR~$_4&(GMp?Nu7d8ZU!>mw3U;ADlD^y!WGz&~ci{>LnH zUEF#P@AMwI1efFYHzosJ?;duO`wteKtw@g#YU(fq**bGwKz5G|{Nn0AWU&DLhb+n0 z#CIbpB7;PP@r=_a2tp0~tTIA{(hF<*kw69*aVr#(2od~@<-?}4Oj%f!5b;M2sL&>N zxk$(&lmt5*%&ga~8#(j6IR`Tdj$d_#?GBP0VquISD~2(t)*DJh=rd}k^6L?xN@R@! z|B&@n7wzy5S;fQd&xzH5f5@6fg81VC&J8iH*6op1R+CdY(tf;18UgMY-paaDWO|RB z$zd56yJ*+kgw5-CU)bK&_15&cKa$tp(b2Omi_XuSnaN+eDc|`Q`=ob+ft=<)X1%<> z?_@!z&UEawPK!D@Z5MB(eW!*)55_x$=S}^XbciI~)=vGrh68v-sE5Xfzv)kq<~OST z$E-*pH_d$lre?>>$zNcX!jVnw{u3cU*#@+D@w{wNN)DdI$igv3&k#O1V&|)rQqp+Q#>w1VhvZ~ zank~UMqNW8bBxNVaOMaf=S}p@Q;jJp=(Ly>flJEihlp__&%ehveyQBitJ+op`SK>{*S`F-teo`<@bw*peTzmHr=T7UFCzkG?Z}?>^=R37j4Apxx*(^Ezce z+iXZNd9qm126aZ8|)1pe zK7Ohp=DE_m0&T3XbT)F%n&H~{Lcz_4{6v`aaM5?eAk2l84B$0vSIOgNe5x6zS_20^ znj%As3Lv%Gt?u8w)xP(J?!&T`rUO;*xBWytSX$wt^ZveODPJPSj0IH*04Ne$M7Rpb z@a84?wn%cJVKzJ#2Z>9@M>9JRu$XzM9>T011WkjBru#4(2Z`Yf<^EQMEqH#J=JRtA z5Q7*#@A0@$UZwxtg5ix#qmo_n=RSJ*X3l%_{lS}>KDjRRoNH3<2v7!qlcNN)aQokf z4Zbc8J~4d5`WF?zLYvqcrw*$?!MFNv0+#>-{#X&Sqxk0P<@3)aIxWHu42-nTg$A24 zHr?8?7n9It{s1VjrZuprf{Vqz0**Z)2F9`~1 z05>_ma3FGTW$<|Tf1|q@;{D)(|4%Q?_QL9geC}UzPzRW=Sq7PhCtjI7p2n2~$pRK6 zR(MM2gYNa2EFdpI++upI++b zvH%T@K@SNs0-{c#P7N{&!Z0eMjk!;dm3BNDC|rJ5Y&q~t8b?XCCMDyyHp!}X#Ij)H zdmmS`(JCw%>Q~cQ;r%tP2IyXgWr@ZMooIhB4=*UAxnCKnTteZmk1&FEWdGtzZt;(g z%$+(u9xk1ZUHvs33a`GJxqpD}dh$`bf3kSOt^ZT&$7zU(@G!HKn|nKTZ!Ea7-0};3 zdapyanQ@aI)Fg!X5J@oodeJ_d0-rza8XwdvOf4)ia#L@bw4k}r4*==y+>h>WE9M_K zrZW2{7o9)@-%@rOJP93417qb1ab0+jA~B~pH}l=0p(f{)=eGYsC>plXH1nQqO6~$z zL_00}p`#$4 zxQyN|>@1DxPx6vT8gVWsl`l$sdvS&R@$#G`@H zxARNpgZH9gF+)?m?8so@lI-17D^b~)*55>}b$0v25`Y5vPo1>2_gOa#B&y}|W{tXc zCius#9`Bas$w@z~*9kHCHI)hKgO#2YQ4L2y1q)z79U{KOkTSohkzBLNazB#srtGOI zH+aBwZNTXkiV(;XsuwCB{4M;`2EloA&ki2+#HOd@v@>#mSIg{)p|_-`!EO+Uw@S`-cT;R_FEl&J8vqYC zVpVA9>D#FzxWs90S8K81k@=GBC636+56Ic=iRoJHmAak6q_paaDqDEdl`!JX+G%HT z#kB>F&;_OCWpguM;Kyu0Tg|sRpLbap*u4e&Ip+3%?syu@UY75pKR&-Hz-v!6ZKdF@ zEl#$*?CF)DFl~dF!m~*IX_M;1gh+7Cyz|-Bj`Bv%sx_8BXM2!ZoCKggXKEW+GRK-C z!(3rX+RE*=MwGs;U4JrJwkRe-pk^&p)6m+PK#3CKcKhG&OthCf?gRww)R++d+4@<3Awbyv*tRSk ztu;7Jyv>zVWHj^frGU{`d^w%XeFH6v%U`|753UM|>3H1a{=z}ez17zIA3_iCelSr* z!sxI%PIp7;2fy!Jk|GGW*kt3PI4*r10I-@QR}G>7rq{H;gd#BWkz63p6*~oPz(JZE z>B?~=2|`tBp9U-HnN-S!9?qYF94Es@x+Da}X-0=bd%}C3ZY{s?cfg%DX2+5g}WMG-yWyZ0Zh%+PAqL_pjDfj=uIEYG6o#ZT&Rib zoDgY|_xp+K9~=$=Cc+uQ8(*i?Fw?>SNTCM+;}rCE6f}HzdCDIOYy_I24W<7&PDHer zW)TtBD-4r{#waHz_w1=vN4f`~5*TJQ^=-CCo3`vJFNrpL?qy|v=W>l%*X@oH#f(0q z1ofevvLbpz|FVY~IaaIon>Ae=e9pYg@%~H8sNxjFD^}IH%~+5UoCTdWoAp(9zX3qO zMD$G0H3N%~#eQD$`BI#BzqK1^SXkQ!C(~s8-TQu+(p#`n7|y4W93f{MbSaLZ991C0 zXfpCF2Nly}JCA6omht=JTMp4h3rh|HPlJW(#knXA+*1n^-SOjowxXCQ-!J5dL#V(| zEfQmPen-NTgws&($&WoqQcnCy?N@-Oqi%}A2~vX*FQvgkc@P$yxWqrI;SrmQ8kM() z{=r%(5!fsoS%iyr*=!PBVJ<=f2Opt0UI#Ycgm~Hp_|GG`tuc@A z8ZpMWT}&`)M!tXGFy-O-V3#_aR5lXcU|cFn{}367FEvE{W*HuIn@W9#N-7_vF=dnc zjtraah2QbGC=*vq;Ze}Iz5#eTc$uvkVL=pu-?ZQwbqimm6XGHdc$gKt_3(0)y!mjv z*@Xr!_t?i$X@b7pFU?+`Z$oSm4|(LJMQ4wyY!yy;6r^q2n{n;qT~7}RtNJmgMR++= z6zz>3@^inFaqNzZZxzZZW{mhzUCy{nZof}DXMoB{y%{*syh17_0PF8#1I=e!GRU=l za0Acdx}}wD_J9Qa4Qr8hV?YAk_jXcgw@I;`{j{a!)g3#+zq^avez|t8euJH=(zIHj zU_Je!41i{NF9p&1Q4yekeqRkAb7vvH{wJ7x-_YZIczRm#&Vb8+0W8e_w`gs$UG(Q~7AR6|VWfz`6 zE`2!d^Z)E;j|Cpz2K?(AwO1}~zf++m_D)}G;PCKE*l*W)zm(AsfVEZZV|(RuOJWyS znE;c&_asQ)izGa*(O*}SO4GDU!Y=qu0egirjCCAONFo6vd#1A@GLqTua#I#D(`UXL zEB`vjav{8}?;(`OJtsVp*Z{^!v2gD+GfOu!OFn_T7)0d=UCnaDa7xl#r3l*50(#3G zB~~*k?NxP2PInZc)_9WRq~o~|&T<7jNq|Yum?TxkYuM%!L9&7cI;o_I>nk!{;jA+8 z*2_i7u$bdwtI1B9X(BQfFB<7>DL>jOoZ->5{LR6^bZ8}hEpA(@9er(W341S7`(G8Ut?krv5P;uq zw~HG)`=gnS+D8MjVn3?etrsB=x3N2>R(sYPBnRmC(BKJE>2 z9U|qoONI}MZ+vM;i+4u-4aO~FAK)^$-+?W}a`NmMgL>@R3Y@I=!qr;*iL@qvPIEmb zvvAOnIaa=|Hc)`hu-NV#$^#^TgJ=fcN4HSFBAGV;dE|zVKdP`w~=%jCaKmB;Z zcFeTg39DiMB10m3a@NXK>?K@DBKn>>UPz@C*28H%?Sh-SaX{h{OZ#Qk1ds*Zp?${o zSODa>y%dQV&Dpy zg|i&9zX-)z^h$2`Ln7|DH%k)9|Li#J3~adH#u*Yq&7`Hde-zI9c<#M2VZVTfchio0 z6F!)1-vL%um<+Cv5_g761_&9X$b*1lWb+-&XM;4Nvvde=jLm2}UXcDh6Zu%rHtgb# z;NHL2=a&=k%a(&C_<^N1s?hq39(Qz?VZs^5#K$o=y{OTE+W(AH>Na|^-mFkGa&8nX zdwV%AnMSKBM+raDp1UMiA2IRFO#f&w4tubF(R$91xl;Y=5RS&s7=RdA{{(-?vQBI& zSP$Y+vW6*O_uCLn2FyO_UXvN?7vAV62YRRntJr~4*?!$g+DI!9e4;yr?22j2qdqF_ z5^+GW5B~`Fp{MnQg`gxQe!ent6-HxTkm-H%HLrpxxUi%{H`jVJd>%Y)6lHRmQT@^q z`T?z`MpC2rS#Jif8Q_`3*xxddm%A}LmDjl6CXrX%-E507!&3{P+hlfRcMOjSyPekS zC7F}b>ujB`#^_#Z-N;{iCI@WPbQbEHL~{%+klt)Rx)}~sXGU`1K8G-O)dF@L#Nc=1 ztjwvJQza(}j16M|d_w17bXpK2V~avlo)BjR4msu@1YriRdB7GP8{AKdqS|j!+Bj;6 z!fuI{49gavNJa1AG-9NOOtw-iv^ssZT(^s2TcZF669zdDYhW8c>&swY2521qz^tiz z(mPhZN4QrEH$q`I4b&vsBry|wD|fq$oK>nis7P*t&9$sWb3pH#=lt;MVoW0yf_PQf z^4oM7rXebU9N^-TJe90+hD$lzqqr_GEgBZnpZX*j#H#y>KWsCxL#Vz&sNJ%EXY7!f z_2p{T+HeT$+?%qowpsCUDB!@6a*_MH86L{ezfDQ2M;8wh4o&yOZqBP|1{wl}T6MX! zJ8STcO0JbjNBF_ZmZ_qa&q?=GU{`C~d*6(snStCdkwvGspS^T92`bCC(m;R6$ql;n zKK#=mu2;nHFDa7$u-RBx(~FD7$t_=-l z*x}o(hS4;<0uL97(_a>EZ1*DB-dFiRTy#C#=_Yqyj2YW?o-bY`glbm7YL6eAH?A$% zUBHNrsTFLwNLWOYIe#X9Xw$GUlDNua+D{|G62zz>!caH|?2NlUQAwGYAFDM)%(-=gC%p;_kd;14^|Do z9UsVl*1WIV!ROZ5IDBw%UO@ngaLMlL|ND?nK>rbZ3 zSD%{t;w~qDvRr#9l&_huQMXvw30s@q5^P9Wk0=8blU=pC^1Fo}+Jc!8RD>V<_IDt6A^E9m_9+4|B6Ek;2qe<-YpW~`$e4O{M@M}rj!%;3vu$LXKRvmD zm>VepqeVJ)eEd}n$*$`W=3~{1s2(%w5t7eA-Vb&Q)a|tG<{QeXb6Ms@i#u=L>A6NA z_8Xhp#~LnvF$gewrKuz*!WKS_poAQCLjwkG`cB!!V|4LD0gq6XMD>8i3)cg_ic9ij z#>#QN$_`4I_VL?K6T72Ety$CaDPsOf;IR>AbPxJmTnhs;hZoyxX1+b<(}r1BXxj!P zba1UV5KiL|gduJ>gbrMu1XX#K?c;Tvr1=C*UnP+h?pgSAGDbGzn33S~8&7Z03Ws=b zbS4rj?XVM#oX1Q-wR=Dk%sgJi$O)#UqCy6WFK;oe_@}f!thP_@A0OFHlWx zIO0(K;b4U~*vyqY8)*k#%6{RwvEn2xBP)U5LFZz;w0dAUw-Wl10&=*i_p4FGG3s^a z$tAr{NgQ^c7?&YVS_vU=YKEW^aU0mFHnSsm^g@vHYHgRtl!}0e7IHBV_eqV2d^rZ9 zmo!e0rfzeva09$M*GqH^;^!cD@L?_jc(e+3F5LFQI4zJ81wnH=E`*nhu98dcNj}Kk zYHNd9+wu#Jc^q7X?uQ~e5Vy(2c;NX;1uV#~3ZZ;2^w!q|okGwj4OI8ebD-r(SF=NR z{*%KkUnSf;U0i@Y(&&1DrTUV=N+swF<6K2q)`9EAGVtj(M}5%hlK-t5VVOE14;SPm z^!%ert&n?*z$LW9w!zAzEB$Y|3p%H|tt<4!O3?Ecs{6y24s(tM!-Qh7&i5upTF1j|^IEWvzE%?@DOcaQ1 zS2C>-SHGs&efarUH{4`^2N_M(jSR%rWnoo9=m0uG&!%(Vb}g{tW00G%01j4aspL&G zu!DJwoKS92rQhA{zU%qSa+L=KjkQq92$+03ws zChjK#VXUSk`P!a+3-&M2Ye7|1>)8`5zaN%1-L!d!I{N9$O_E-G>G&x2{8L!km zzsjr3VP3rRQMr?OqQ@5K-rmW3 zZKeI1hru*)F*+|ZY#x4tF4Npq5!a+^{7WViU=&l`v^IO(tb9Yiu~uX7>m#3ebOaY$ z6A2v%$o^M+I4=1e4?(sH6IEW*3O+-myB@3IUdh$=# z$R=YZ&S4snP$Dzg?pHq0QEFc~%Vyx$lZfv)`h&%j`U4VBd!^?C-P?K@HPI8U$UJH@ z;O`m>7*N4=mE0-)d}9Hn~MKa#a)Ll zeAzje3ZVm^K2J~vbx$r)<*#1ZBpy*{RFCd*vx#g|`WE**qKelCtY?gDptHs)dJ9CP z94!&~R>%QO-UVFUE#l(&!@i{s#^e$_fQ7IWE)LJ@r+}^eywm#A`~kN@|9fzg65>wY!O~%y@;q+LFfF{~jxgj=644@# zfH|nrW}P;Yq@{|1UFM;Ua};D2c}(9yLj_U42$(DwPa4D{_5{_R=>N>~e_4Y>4v^oi zqF?{~pH?Vn5NTjQz|HaP;P>VBU#Let*)--9;1LY%&-a&P?%k?%msYz(82IsL1;fLa z+h182a5@xV$1nJye{SD5(QW@;3LrKxDKR?yP3(Nub>R^RN)wKF7H~Zj^pjb;vC7iD z%VTU#=%C+w5()@5Os5gzRlV{^Y4p}E83i@ZBM+vQ-9%IY44AC!R{u$dvkX22FRR9` zHSo-$ADNQhm&)_VPlflTZ8%?@Q6B8+x=1+|8+8GA?jxwG~p%IKDk-kND^*?e>dycsTFbB>5ky0TzHsLC;Mbr?HwviCv zEDE-R_sN<&;E;oye*}5LENgDMF6lsZZd#Ls9F>cwi{jG4A*t$1TIur8U86-ql0@)G z|AWB>)u}p%1bG+q^)&-DQDGj=)w1vFlLgrbt*(Sss?ZZ>Iai_m4CX!XXVn2#v$-+} z_>k!uP&Fg2CYo{?II`Syi9X+fRjI~myw{ZhY-IzLoBL|4T5$s8EQGo_hpWk|Q&M-> zdBA3jlm1FuZ_Xw5EzLZA)9ga*Dm3bP>*0QRzJHWg(bL;# zH1&jLnSLSyIFz)e)%L|dtR~5!HM5EBIGcr-6U1Ayg*#N)p%!dRf=g#^;{Cj#wE@7)1()o8axu5^P!jtI;SYcw+U^ z5ae}j9)3aHA7zv0l89`OT%C|Yn&gaP@3L7SSu+aX9Zx(JX9l^-FFbBSgx1M^A^;*c zpcT@43tkAxTvlEbt94sqC#6JXZmMjGE#EuGm8WXEEI}>5*w&P%>{?=A%Me|`cf&Y2 z@URsE_sP78$x=TcnRd3ZcG>o^Jq)3d=K-v{5>MFo(aZ4A3h($IaGu>tQ^1W6vdte@ zJ&I0URo=?Y7~aHxRN^yu{=ApmZ_4grv%Wu#u}9ZYzlq64@I1%{8f<}4IwA2s$R2Kz zc^9H}{<>9pNIl84J>Oqf7l7AjFvldE1v%!o3jZP$SmZ~!c^%B$pS~kEA{?YnXvdbR`mF`tB)oY|NG>0wCPjT zbf#f9f3pb~awxDNC2jD*ua3->{yX9$P#TD!@9gjy*}*1ei~?kiUgaj*cd4lFB2acZ zTnsK2`Pf`?0wMv^m4kV5ggBOOAgnpNHT(R;5mtT5IL%GVqfG1zn73x$30be&xzIN? zWzMPcKMgoGPi=O>FbixUn}h0Mk885XXfpc{Pq#E|x7K(Gf&blS!)A{(Li^XF8HY}u zG97(@ul^Clg2$K7+;@Q)(4#7knI-X(d7T#?rs9L!`DOobe4p3tu)6~UeQf{$m4%HV zOp%pQjiMbve8h1AWSk6%y(LC*PDj61dgB|0dC*OoWZ$xDsxMtHXfI6?PBzL=eC|d0 zSK+Hm+Kos?&Fc&IL9a@M)51ml)q}EhK2pwcqD=FNQ`R46@I-&t@K(i0UYH*|5}@0m zbm-5cN=<8ipPDq<%Bfb?r=ZyLCgRCnIfW`suvZxqhl0-nAkVld12+m9K8V|N5!};4 zb*7NKT89|j(70uRJ8u-J(Z~reS}@o!FEA4q@y29pO-=c*Ni{C;WiKq;LAq`-8)V1K zbZm%}+%yX0m^%aeZfY;e$e7+gLIa%?Icr9Dz-gRmG$JTu$Eb3*_LNR?Uz5hwIv+>B zc9k6`H|RY9Xq&RvVU`QV^31n6PjQd}XFu42F2eMVwweoKx9qIexO`xH zPHBx5P+X$)ksdFJRa2hlk!1^bRcU-Yh%9+FN#H#J#&}W9|6)-K#iFH)7;#Xtycj8h#Gpoj1H5TCIZwO$u~7 z>WhphV}3;)BE5`F{>hf|vHKtjv3%^a`hK^Cz`x27nPjX7>0Ufq<8>af36Z7g1vvzm z@aw<v=?_WGOePzz~hx-B_=1;RlyHEZC@H{EtZV5tx&GV!`Y^peUP!( zPJ4-(CqXlh1*eJ5BsN?#?&pq=@BRBBe&J(y>)Y4qh_J=*8~1&M{$?2Bx_QGR?+HD6 zH|6H}4L`VR`FJhRY5)o12Mo-a%BTiH0pR$*2J4?q+kXbD&+5O09Vz%zp?E*UydIJ> zVLvj4xt`AGNFocw*T4P&39h0ZtcAyhhb7_Pbt&Vdr>-Yt3wV_9{BSsJ_}?yK*Qv6JA z&|lTnLm+k58N)s`eEsDYN+qrWPRDRaMOVFqNTv?fl*uN1DspZ*J$kfMY*?+~Z+eJj zj`xi`#`x?dg4w6ejCPH>JFZTMMYIu!rp95Q)MyY-uAFAdOE|``i)b)O$#KeVdLo48 zAx8F2XcZ~Y`HBEUF#{So?j(Ho;R8x5b(zNk`y4mCkl_Q}owox|PxX~)nY~=njCP!p ze~@ccm>;2%aT4QRxA7A#P@}ZJuIT9LcXawHagcfNOa`gnbVq}`%2 zKq!tVpA}Z}@Af)`1~NC)+*sNNtGOT+t&lYDBNDlJHh(CCbqxV!S4lt zVM5({+ogdd58WRo_v^T(9B{~T(>^XPzd7J^Kbkb`d1XX$8H+rDV_-b#anO-3gG}V# zpn&tj`x0gqH?D|{xgx5fko#Xf80&igja@X{12Dc#`>PXliS-3~mc6o^z#;QT_ZW(* ziPU}bDCK~0l2vZ~U*Ve}I_hgOF6~f{at4zIqGW%1Nv(HxTynz3mU9Dp`Eb3x-4Dvz z+?Eh3@-q zuM^l8_n4)8x2Zz8^6iQz^4GOjRaeaO*a*!ULu+(Y)u~`n?WZ?XRSRm(L(8c0N?s@r zYO55sH3QGUa(%$~S`4*9=yHe|YJzJZmCv}02nU>T6<$Y5xm zsX_p{!X*4;Uz**5pd%{jRY>7z@nAWOMJkAzOuuIuA1$nxMn*y1pU8rFP-jr3mIR8l z6ruyDFjTb5rG(B)11gvXlWiBQuTcxl@&%d)R87h_?DX<~?ZU3=B{TRD z5*a+z0|GWyM@;)SqK1sLK%O`a+wpc)swx2$yA;za$pIls9C^0}P(*EPY{XW~zjM@3 zyLwWSZ7?3^AeKu~{}?e-52Y+6yHB2&WxZ8=*U`FwGgnWwTdmZJ;jwlF2Ja9%&CH+Z zlp2CxL&6dA5_|T{43u_5F%>2xZwTRg51^E(b;Xm-OA!g5D=Xb}tvWTep>54gD2D-9 zj-S&FSSI+I4!Ds#DXek*_a3cGvh}Eg_380GR3~c{+MCH&#{X!B0(nm$SUv12Q2MDQ z6s46a>8J2osw_cO@(5EWE1=N}qE)QsZ&cOh^+YIP^QwwWHdZ?i6ZMdnI9Hkd(F`Z{ z@P1@OhtGf*anEeA!_p3u*DC3Vkmme6*9 z=rtKTlOT`H&)21bZruvDpO?!v@zytY|758+C8jUD-XfTeX(|Ryd3OTB?ZJHIYou4- zH)MtiH)p&tQ3=x1VH@z_nNO!TDm8fntqB~n4VclPJ>|N{zSAoR8Xi!d561y!vOm}r z0b??iTc1GEd)W%$<(Q^MhS>(xqNz*74&xS!{p88avyOM;oldjL@bFbU+B0^CHxKzWefK7W2l1qKPu}v>ShGL=&UYXlJ5dowB^UpKQ&}w~Y(kBJ~RHeJw6}?3Kx} zWp%dPj;<9&?Nl=K41Te4Sz2-#!GHWqH$jXR9sm8CgSISiH7ScS8}tcCz!)69)_JY* zTK$HJp0qDd4MhOKYyC|JVgL-n%9J{P2u#+RO#hz?Q_%gksO`J;WuEreYLG_>a}=Ws zH#fKD`fz+l^K`Sm-QJ?6vWw02b68)MqlphDX?rJA8R*5#^>aFpOIDj|>&H|cm}TYt z48tNVgh|%n`@>kbDCA!58$;}pr6bN8=g>NW@HS|&+F@$S)f)|ZB@w=r`l@L(#(W&# zPyUPnU?y^d0yIWu1f=jQjv6Q&C~lNe88{D;08c>JEA=Al<3l$c9jLvECya}X@Iqv0 zfA~=~07u3O*qsq6&Oqm#6|B|@l2Enw8o9$s0@lrPETIjE^IXs!#r9rUi(;Td_kc)B zNWx1S#SHC-p%GHHu-Kx>BgezW_X4?uFSC3W&~)Je-p351D@%L#Va{|cTiSKrWSRa@ zqP$}~ktyeqsSb3ioLdfF5;fzoXtB&N>hvD6QG(jXvf(cuMUYql-Z?zzHCBofKikcL z5KIPlRQY1UOM`Tp88cFmu1Oy`Ws`9fY$`oXuQols&~|1qzbCu8mfJf~C@h%k@>r9a=eJONBTds->2qCU*lFIx+zm5%k`EJkHc;{|HI`B=`UE_zW z<+x{hh+ii89nh@jKs$#d(8MkVGcsnn*~vy9fLxYq4|W29a&~K80gL{;#R?NaSQfSdI{?L$mHdId9Jfc0PTE2a^FU>Li5WqwI zeD}kkb1jU5=>NW<;eF)|X!8-l$3Oqve`UW_tBgbsg$MMsZ}xs)f>ybzcW$?gnRa## zuvV?kd60p$jEW@Uq>J(FW39zfjI#(Y8G_Us%fcQbn=NvYqIW{aLC0Y#;IraigK)a^ zD?29}wUG4#jfa$RuR=0v{uLHXLWi|IPHRG;6P`MdokzbI8Ft(S0P_9#YWrL}+q=Bg z{3rCJfW^R;<)Pz#vVq8>y5f3y%yWnHOA8)Vf(qty69(FhiEc1o_LoabX4qqA$mGr+ zW5|OFHpJ9(wXsC2N(vCdt2NY=;>??s4t^^_V=KD zr#drR6Bx2hh^jcrl-IALSIOM~&#KqS_~>ZM=47}RjK=d#_Kd{E^p#$+mtERXnj6n&9KLkv~F%oi8(h<0AwrxTKOagf%x#8dKrvu_%nIY|a22kGj1o3@&q4()=t z$`k)*Ii{lZLc+EBbAhOVrrOZ|Gaq@*fDM3C%X`6or_wn5d!=poLGS?0V1s>ar$TsW zOp*V79B9BEkQuQ3!4D|vDch#2<-Jl)@VBURQ7Pt96(`;N|3yG*fyZ%oI_PoHtN7sU zaFhB+&D0_E_}$oNulWAz0Eqyhqi(J4cF1o_zZOq1fpREG@=+>{___jIJtD?UV#{t= z0e-O?qkRW+(f|Y~tiVfNWJXe#15U!h*J zp3)UAuSZ~zYBocud1`7_LdN1FWvTk@`a98SvSd!>br&tEiT*-_j$u;DQk+n>%tYwp z_@(Jl4oT6*=(b>p@}P^(IFjTYTrM2(S{>xA24{o%Hh}h9OD21{=0Q-%sKmqEH($!i z+}OYP$IHvf;N4*$sGD1>7e+^>9!Ps=Z^tP7;NO7vT4>Wn6CNXc?a!~btCqyb2G>uu ze~Sl~l&d4x{4N^YI301=Nt?Yctw1=pTR*WebE$VPy&ZpmU`>$Lt?=W~1VTW-av_bZ z{FVtkbpf=!wTl;@C>zgxg}KX)xFyH`3w-Q)B`0G?leel?FS@U{Ff~RGpu4vw6#9Vc zgQndJ%lbZLylpy^FlBoCIZI}V${J%+#^{wl3Z?mRgB5fRq8%r@;t z=Ke)bJuVHTmo+<(I{=l_W)>V$rxEt>9LAH5#TFRcHzN|lMxNRl=2EkE1Dm0ba+pO~ zMHQWzF9?DHkh?tI91U|xC_RIIQ_t$q#GJa?FjE}4KN7=aq6VE;tT?rf<0IdrwzV4N zY%s(|EH^K0n8k@8wrSQzAuZJKqUml=OXCj#61=7YXhEVe9!z7Yx)rvGr*zND5zRl;4si{Enw&!_`;5!?YQ=Y|H-RdSnThhvm$=Y3>9{8G7#oW>2q_1w^ z!hJlGK@ZN;q3<_*`bml;!w-6)8~b@v>~;PFY}2genTps8iJW@J0s_-2CG$^*rS`Le z2xBucveB_IbN<^1SQt6zn3)(D7ztRJm=NjES%_!>}=>$gV;b=0ZdFxjQ=N~p!3iA;6VDH^$|i?=?)$Md+Qjag<{b2L-d|DhO_wN|07By*rD&SzVw`8|Oe(|;)MUfJC zMFg`tMCG;e?KUX_K?FT%lwsP8FF@n4nhETv!l7VH9JC>qwWbjdH5T zF{H=J1_}*VIRMtY{x=kwQNkcwVjyc=%@mJEJaScic`V{2S05I8Y&JU7iu*mox#P2m zWze4tx=M`@?UhZroifvSW!6iINbj^C9T{o;qv_q@%~m^KzOQRFiu;@G>1zYeM|iX0 z>%S%N{P@50Yfu?t3!+4>v&{iN4~jf=+Ho#Uy8+Vb_JD2D&9Kj1GG1{GT5V{BgP+SM zHA?&2p>F^gE(sW{Tkx@}xyoiEwRFyQG%#1XnQ%m5EZi;>5}>oh0|)?2GHqVxCsO zZc{I%jhTr+9a5p=8jV*Dfm;@~W*ptx5ra4>&V4m7MWFC(OVoS<2j5%#b3$pFn zc>9GRyXa`^@heTSI#M+|P^539Z9c}Cd6%OPm5&swoT_vgn0MTW6}lRgAp7MCUbID& zptDtEDq`cqX^7n9S>Up)uyWN~et(M9kZfa6F zibRvAWT=LHY{Cb-=AjfCV;*2U8m)4yN&pN8`tH>Mo|yk{MvTWWhA5SpbheU>HU0Lp zSZFu#(1z$3>|O>l;1taJUQyTfrVVkw#a!Yho7p_Z+35+I2SMck?g2n`O>x%4q zp^QC+vAyVN>yI)9GvSpIXNgklIdB79Xx`hA88WG!Mv&{KCr(sNv;>w6;DgBdM8Jw| z@&W?@`*p2=+_ng`=m>Uoel17Dh_qVo)L52frNaM3_MNTqyCKLR#^?Pu*qPv%W`ZT_ zMheMZ;|eeoAw|7GTndGY>s5zjGcAF+#}Zy~?vkmDkexC6nuFzZ;94 zXW)_xzq}A>dUgpYoS-B2c~(3yzglFKfuYJSw--;gAoB)U64(A@{+7Fp8G!u~>mn^R zyH(GB?U2PG=taqkwGJVP>*k#k6V_z?`;Y6>NcecuZd}^Ah$7cRLdvCtKuze1pg0>` zg*i@~l9RW8jUZD65GAlYIY~i(@abZA--!g-BWiIj2L~Q`1h~aj*mFd=u_$g#f?&kSU9}n2a0PL zmYVVGLGUyEyR#jhiMp4)dGzD?y8goYA3&Da2HEy8zf0J=}xZIz(Je&{5r7JI; z#6EWxXj{`HwVV~n{+UB$l&Kk#)Hn4!xM-w%26~JkhH!d;2nL5tNyTX|$f0&cv=kVjS zo4EPJsXvo$`(aHLheSXNJRRq3Ty%(kN((_BQ~|?rD){12yh3Kh)gxf#y!-f(#m>p# z{fWAF%>!$bh3WF~*W>k9sVM<(H?GxcR4gB9FMW>Q1q~Ll?*e8!X?yCkSimX{p>Dbu zH(+PX9T~d16@SLj8P@03&we{>-Cgiv#l_=Kn+2IR{tzY+cqY)jfwqce&?QB=iI9I-@VuKRIl!?em?bGX!!n`}!M;5jK%B?=d3V{lKL8$mm1FAU zcYLcm970yN35EF#+H|mbr@9mJg zd=~R~-t1N|ot&H;xGL+ss$sjls5?A(5(jEh8zQtvkWqA;yuZIn;bmE;y4*~Y0x`~p zUG(oFJ>B&McDDtdMg>cPG zevk=H&$qp{a-KV5`8;?EuX=kXw@q9)+IM>4r{5H~HYP{H1`Kd5W(4hqHM}f*l@{Nd z#2QM3H$VVsd@p45ou-?0=QZ|W16tbcFy5Iw2U^jpdo@litHEQ8ufW?jLBKtz?W0}d zf5o-TzHC0^jw8ymiT<;IqYLOHf3M`yBTn3tDe6fQ#^oibd9Y4{4^F{BUv{?1{fwAD zG`S+l%i}MFxi&uUUp8ga)6-WHbiKXY@AkEQbe4?0w7tBn3N$sjEpAKc0(DCUi$P%C zl>bd#cp>Ib1G1{N;pYvqC^CR+l+aaHnH@gGq9 z7_n)EpgL4s!fbiHUz#Q%(ydN*CtX|;jaX~3*PdxRE#~GumUyM3*-SSzR-?|`qSuu@ zmQEPYG9Jv>^QXP+y4}74fXXkeq`p?v=8-m+>FBp-Ez9rg1*`SwYx+$VH?9{P(xA5- zIPj(SMMTyg4rF+z)ZGkbP)7VYg-() zNMj@uq|O4G-sHX}=lQRndCSOn;*%%jsLh8?VI>*f)ACpb?tC}syI9@P6dR*icJL`8 zPUY~eEa3Ataz@3V`Aj#(Jt8o{jmuB$+FC`eU5R;I93ET6zt9-ia8b3n&by!Va5R)j zxu}hs$yx*P#Iz+JfbFfJ@tjTZ9%>($Z0vhZ#&cKu;|F3qDyQkG%{@7-nI@JX3FtB= zJ4dvFG0Mclb<{&s*JnGQb_%K6b?(uVi;=W|=l4{6Nd}U`ixE$Ou?=FB2kv+L5l0rq zFO9tI@W?J>So}P@PuxR$a7cUm-}_IjO;RO{_u;0(&O+#bgvh$pa3p;=;xV*(}}0x>Pby^4ZnJ?xru*fS6%Tf%k;ta8phPpZsg zSSG20*4PFfU(4CQHrje~LKgyf!joE-jIer%G#^gq23JhR2OM*;ivYtJNQPC62|1*- z3vNRkT;;GzHRp+R0-@YGP()6Qf(KDh;t;72n7Te(9tbvj5YIiNhN$e2pBvh!L>W%&Re_Xi1q|-;lIyAziMWNa9Gw*CJBIuj1Yf5dOn_8aMmJUZb^##T)rfz{wjN6lAyHVv9&~fL8j-AE* zz7ND!^wIIYR+J^MV)xuM9sPK8;F{@^XeJ&Z_9~yd(`xr~wJ?`2tKpE{D4uUP_{Mas zH=zDZiECaax+8Eug+Z8=uaIo8@E_|v&pkBS14`CXMZN!e1xj*Z|8IZgTD_bmGyQ>^ zc~5QLt9qX+Zgumo#qJY8cHEo42HE={gpQ&~ z;?Omj@V*9pEn}xy4XcI3A%Bbpp%@B!L9Kl+c2j4w_ zz<5V*8w^_t6oI8xy#F-2-6Y^ewF_e(_=qRyzWARM(!cGhK9fo9j4WZ;nVSS;K1*ei z4RyiDflMqc4F5-oiCSw$`bUWoiXY%Mz`VM3kKm#CM*nrVQ@$1fjJt>H0}(u7p4LJu z_^j|VS2P&bT01Y!ol~`3IUx*{9Bt(z#lZjVXY_mh=e~V7h!$(8y?EI7B3=p5=dZii z8d^M92Mlz+SD{Hzg5LnestG=SVFlXvobS!7U|ef>klU zW|yczx1rf)v?MY#N|-DhQ}cNe(eGE^{0SD9?$y)Wr5BwP5_rNS+#r5XK9%+knk^g}i^g3?i{he|SZ_ z*Ml-%jaPEmZO<3{g;>%3M_@MEE@mA*t88SSplvRw&0uH|_IEOK%NlM}vb6EgVF~wT z^Gv)^M0UkO%0+#9xt7mK#o~$oEE30{3z!4hk8=#X$1Gs_uRrH-=gZv{P|5WuN8oqp z4frRx_m-VTA?e;{)G3QBetrg%(Y#?K ziI^_^jQmyBm$(o}3eE_|Z7Iru!LEvMcb`9S)GobJQeyWFPBB_p?ZV(vQ0IAExv@|= z1W`c!JbWOpievG>Vpk+}VQL`I1Pu`l2JOWjkE~0^|`axWJt88+xeUu#h_o{CYjz^}e zDH}AwK@qHs1B+(X>&tn<3PnjV`$Tb#xSVb8VA!o}gFKC5qoKUug4U0rgABYkyH;?A zA`$*721+ZogZ7-~@-N4QU(Q_kCGqe!1wgc7W=FF*JF!Mk65L5RXS*Xvx@Qrt@V}6P zlQsj36#P$ncxihKPI!w-Z=qG==Gynq1#`gE^+`dmk`3H*_GO4Cu@F=Y-sDz^79bZ#rT)RJMFwhyoI>TT~3FHOt1qz}^ zteU^-Xr8x*7<=!GGfE|vN?Y1as33v0f-vkk~3@I|-+k2A}HIz@f;^m0?!6zq_K`Nq52A8B1F%#FI=nw;+LW(LtIYB`=r#UsQsEJRaB}cdsyzYR<-#;_cAEK-~giM?zH?jh3Qqz8D-R=C8IH z8{eedcOO``jYnznla|v7w@V2BL%-xdGN7t zIR+_~CV&XaoVHAz`?!x*JqyR1g1ZsWzmF_}qA~NF7+5|RCutvbxo~pKQ&nj6Hf&Th zEF#F=x1G`L-V@t~PEIByd$xMbt3V%WfT8t#k0gx5h53a;Qi6fzmVGs^?u*E_`B1YV zt#$OIjTHL*ca0+V1cS}C!z?45fw=iIhMR7QY_p%x=zSZ_wM*JYj65)mUm0eBl{85r zML*sa|G3+UD{0a!E918Hl1GGQ72=~8;lGKaD>F?QO$Vr>m(e5%LcSbNFfM`Sy4Pb= ze{>8$tV&abqt$9iwx_!v%B0Sd+Q?)L7^G8$tD=uZ2%QyOS|2C`Qkap98$ldnujV_AxxsK;%2TUsGw`Fc{(^J z4Zo|D=%`VrAYqueZ8Z)4wNpi>7DvqsIIl2sJJT*o92m_CE&~rQKvxt&&&$^At1c&r zZPARO%^W`N*Ied!z}{4jD}p^;=95?7UbAX11@$ymt;O}2k=c&(eg^7Vff9$+6BB-uBIKZN;E1gV%Wn#5uvg(vN(T?5;LE`u8 zt1;=x@b+?6>w}lJhl|>*u#1|^B89c8+!~SK_eulg&p#gxOI-Muho_JKsEQkvDDzzK zA0IuR(ZpGW}9Kn z$rnCmsp^t=b3icS#B#^>5e?urC$d?-|2kr$IA97G_tQ8uj)M3OpRx|}rwfJ&+nULs zd!mY%mP=G1FLl%rn>fI5ElGDulX+`#4%fFdjI>2p;P7)gvIF7G*q1lKD;kgHB*%Os z%wFEoow7?>O6zkY7X9V#&Ik!Gfu^7js28XD_0evU@@^Taava21gE^t&hZExHXzs~z z(H+1uGU^v9o89qSa4z>krRuN)xuG>0{nPPDEIGZH2SumdGLxqk4N0=@D0PRbAoG#; z4hXF!{7kQS8lF08j|GivWcs&$jA)wIaT3O^g;ZXlj7~!8!b;rYI3?++j-uwMSX(AY zAS+^2&7j`?q^sp}oeBFg)#o`qVPTk6#SCoA;qVfiRM1sdBpthP85w_>T=1oBCujDh z^E)lkM_+1cq}JaoLqB-ps#A}E#V}F%txB$18(q}omSkLag%cEqX61$sdahZEQ@BLR zWhV!FTP;rx@!c4aDre%$6?KhJ_FT|+0+=X!bc0j`FB8YkH6qF^bF zYaeT-`F>{7JP2v?8ySty$ZsW`1+&&~kz^?RAvs#q$bfyW|8N4ewr8t(e?^~NOunlY zYs;FoHw=VrWgEj9IlSo{TOOT(M zNIsCh0p`rj<-dNBzm2y zK()d|7k>Rt)zXf~^Y|mWPGHG~57W-rhnC-h6fkrv;qiUyB>KeZ4&b$jSpd$tIy`6* zR@)W+p>mz{9Z7m#&O5Rz0j?5ZLnEi)Zow0yy|~~z(>#Y^fklMH2}7%A$=9c&97RQ& zYpHgXAffh0YZ#ur& zJK&mv_UU!rUPSUr9J+Aqo(#(B_9wvAp;lS{1vtlr0YEwCv*6_OUx3@Qrq!cb*Y~Lq zi^SpMx;3J3Ji2WDgTx}t{kxdJhg`oDcvlL+_UFQG=k3L<3;+F@BH{6Bd;40U+1@FSd99s(ZQa%-~t zzIvEGJ5KUlAPhxY9S(iwChJQBrotQyYqbtrS3UI_?&ntxCL%r&uJQu>L<$J9TE%r0 z;2b&9RA+I?Hd|&U$L%MlV5fMRGig{=NFCHH`*44?v;pr(mo(P^CLNIJlk&A9cu9I} zG5!te2agQ8uRB*`jT-+fX$Yn{uM&HpHFmn;w=6_6t7rm#g5A^|Vs<`W^;t~g{zt$m zD!rZWhvPQ<@g95w`X2py4jWJ$D8WWWrDY{T=Z_jJW9{nJ^+u3T>q34yp`uMJ*(Q+Z zE0%r+V*w=CaliaP(1ozsmi=hDpmKDX@40T7;LQ|I#+LM>@5u(0`=kWAY+fDp69rIFG8qHcgL%Hz^PhW7HMgQLJb3SQru_v`&u} z%SHzy%{Vi&nI+{|5*L@{WnUy*r-Yt-JAs}dV2Gd)DXV?%){FaYN+PrYNFI! z3O2~xQS|q@%<>AeL6t@>6OLce45e|^LL<|F^V;n-vI`x!qUgu$PIWb`A>o1p-s_L; zcHl`G)|kj&uc2Kqka?ypQL&ZKe!^qqXdUM5*3SW$aMS4?Ur#4E*B=!4=WzF3O&&e> zalJ+|=)2=?C{<^&Cj~X?y_V?!#-+kuqn`szdEZ`+xwSc~zYRnLYDOUauK7DON}53v zM(f4qEYxsQB4%SwP4s|Ea9ChC8ag#iV=Y0q180l*BoQS|W5eCfvL?~mWN@vo6+(8Lp1_eJk9&`?W?*fQl7aHblCT6?|1 zk;`E$)cIso_S7tLlzrk_-^jE+i&6@Te3uoifrvvr3tyj~L+h78pn=yKl$DoeS?{6g zmSS|n#1(h>>kk)J_6dp9a;_qPh~=8eymxFu6aE<%@rGZYljLC9|IpeME^e3hCT=FL zH2MOrF(6-`SC(0cil2)qE)~heAs*>UR0-2Ub!s%Ed<{SIr^D`nE&Ph>d2rAWhkJ zP7U7@QAX5L5wB~KE%#cHoOOiVT?jgrRm55!tie>7WoSFZD;|g{4c^KdkjN$N%1+*4 z=n)%=8D;o>?hvme8lL2>aVF%;PjfgJJ2RljC$06n$D)4HTI46KWzE<`P4+g^rcY@S z{iU@H)q%J*%3pI437qo1+->PccK&K(&ulfOT{#vnH|b8B>$jz|8c0-8af~g5)apO8D zeByF)45|Y3`y?zq5^4I<4u*m+IiNpShB!`MnwlGWIbX=uUX4c8Eo!)iCU0C15W`-k z<}WO!G7DL<5>pkLAfQ4o&N^LE>J3S-V+C}jK@MpcS2+U68$Pi(-8@k@_vWCUVPY|L zPQfw_iCN_jRhWrK=RtYbiCZ}XkB_JbT+0ik~&n!P-;vN5bf3%iv!Y)%I?YxnJ{&z-TlnGa4 z`7ol=0Hz26l0k!Z)G4KhMs}oSuZXj zf2TH#|Nuu$qXqZpO(OR(QQ{J^|gHp0`;9Oz}M^V7+tg@-!hbJGY zT2`vbsj~ly92$axawLDITYk!M9PFI`Eyu}5uW=xByr>_wcT*u#jv#*nUvehz!T-7h z4nMwOMUF+&3Wy#5fJCn?8!e^dU#@T;t+d=%I1g#$!>5dklhi~GzQ|S(3hf%(>ynFK z;$_{$xiEjbyeLszA4rzZ?Rvbf@VE&bXyWJgUyyd%Wq>iI`ONmacA zxh-g9D168rDW7d+s8f;fcqM7J$k=9mQa7@lpSPM=yZvWehVf^3-c9?pho%g1E?cg9F0&`Gsp}F(IHpWDj+BI@RpO;PY zFi1OC5l$6hR~AS97uIu0oWmJpiFP@-mJ6!#1G# zL;q$wxs8gUO4VSpKEh<3EB4*@iDVKMa>Vlk7z2~c2emjfjB|a}Fw+q<*DDG^il3F% zBo*sHj{m-TMA+bh>h*XAde|XoALVwqZyuCaF6-uqiv`7yVBAfy zET>d4%Be!&ss1DrJZPz$Ub{#f zAbb=!9stW2xQkij>0TXibws!UYy zgk?#YOjf`WuC1TMd&&cO8L&)N;F!wmN#JUbXOXnOFQ+y>jL-QqR~$LXS`cRfc})ZS z=dyDoIB;Hz8SomVAZ{3CF_w@fNZ56XWYkNYR2@`P zvfn65q%D8AO@QWoUWKLRGk2w}gqJ2xph@2~nLHp#v-?5F+~qRqkE^;_L-n3gLRA(U z5L@cBY<5pw6ero>)#q70c5pHZq+}#&&{rkF8_UU7R_+(eLO_xpctLg(K1>ijv};!0 zu$y3__6+reLMd38E}gS~BNU7ouS2 zU&h8tz(I+-9(BBlU-!jIm~W`gEm+HUm5PDk&oPJ30LQXJs`6&qATrej^5o?oH<&Tu z^9Wwb?MJ4HKCh0f-t;d*@kT@u=vvWux5MdDH zLI^-ZGtYjSR|hJxZT%^E(UnI}x+tM9d`~HIPcm3<+mAKE8c0|>VQ8w@N!Z#gWiTG7 zW~)>?W7TBjfo1$UJy)ql6E5d>*Of5n#hYL`P)j_}Nxfz`9>IbE43AlzidKv8SP2t^ z*Q?NIFhV&p;O*f0iX(tJbq{t5wDRqF{(JIX*x6k@+9yAip_QqXYt_J> zg5oAKqm61({tg3H&~_|wkBI;s=@NcZ8qP-?A-pa$Yt>i|l%oA3dhJ(;xml+d{SHe! z4|W<1lQkK^eon;=GNnu%p71w6mXRTk8Xc@zd`ykw&|R8*c4&<-u5wWOGC!yjSJY{q zZ!gL7R@m|bX<%mdktD#M8G+&J>8@DH>X;N7A1m0DCvf~6tV210z+Q7QQaeAioXhwV zqI68>y$j}>@CWe!LR6TK9^Y)imHF3aL!p{ftG0I(Ziyd#cGBXhc9a9#s z0u^AmvtoGQYKxTqhmjrmH8U&Go@2%*MwL7|Su+mO&h~3!B$zJB&7O4ESbv8~l zfvt+IzAv3^gP7E{jbw4K{mIHaSB$2#GPcdd z*2E(ts}lAXjYwlba3*&;F>^@|AJFX$eVlD0KT)dEq^jlunZ9E;9Du&TJW^3bJ_+Su zCZ-}Yfm@uQB$@3gf6Wx`oXGfyF}HVcM6+ulK^>9MJCvDgb>+6DSRugSgDb~m=@p5IkC8h#Eb18uiABBV6UMTv5CsiUI? zGyUf#LxM^9dJ1H{>8Kga0NIR(iwJOWvFC3 z%7ZkLZS*?gKAHF3=aS+{jf<=bP_O@|gp$Sp5b;smFntj?qE!={R(_R#U%v1rb`TtV z;B?dSw9(J~Z;C?Z_qFnUOMlFJ+OStwd?mF?{DiSMms64Fm;HDS`qzIr4EPCRIHc{2 zJ0*&}VMAij#HqT~8&D-99*fvE;L;fWjq@-gdYq#3FiE4_rz0V{#CSLdYITGbT6rv3 z--WBA%87DJ4b1l2r)N2gGvLXS+svAc-Kk2BHD0CK%+t|*}(`VFNx@D87Te--M1n8`(k|E#3kN(m~U=8$tVXIzcb%kNsGM$)jmxzA{&H z<2@2$eGv(Og4aNpP3p~(IOrxyys8FVRX%k*tsF;wd|?{Ua!$rm1LJB6(FI!u17-Oe z3bz7HZW;WnY_hHe!vk_M{&(j@t^ZI|7bDrb85rhv8UI&M^{lBzDZlv;5RkG|TrWMb z^;p0nyzh%BCkihwRdxxRci)+P=d|B?-)Z|0BYAi=eKg)8!vXREv3~KszV<{S>hr_f z@m0UvW|Ikk+jIVSc?M2xFK+K%iF=jl^6#e1`Q#pcF?B z*2|TE<80ka4JiR9&w_Q5Z1M8MNB3YaQT{z2;Dw*!=<}#U5GLNE^C0%qTPE~*Sv5WS zn?=JnNn7wXpcM#aivW2q~pHwrMgyf8W1DoVgDr3a+e0ZORfwc({EZLiN6?fH_3jK+tf`dTQ{ek+PiEI=O~S`~ z04%_scVVfyNFNA^OO4yA0h{3U%+wCC^*YJ>#`o>Hv7-ps+ywHyF?pCTKcXILZyJ0C zqjycd+d=5Q9ov_^6M-*rDH<~CwmdlbzVQ+2r`NfMa$Dn(!;Pkz*6bsGC0p1a^ay0A zx<;9&Y|TBJzMPb0r29v`qTa$xk@0OPUO+M$2&P#2AAeu~$ZqKj3OR!P#T&fjEC~_! zLGfvK2Nmb7TnnG^!lV(eYG8bF_i%Vof;m1d!Zl1pA(j^PuT6AgMq}I`-gMvEGN(W~ zC#7eob-~JK?{}^fT0*0@?aAI(eLYI9l;%6nQEtDL7g(zyT14zaaq8KtcX=?wFPED|nND?hKH+%?-co7RT@!mB3~rz^JmyPPOD3=rmGN%yE~y zIN?$UJ9w`OtxbdO*2x&BM|qq&#PP~`Zi`H{zZ+`ZT&PVC4czQWc!Pm-tAZ#Q>epF@ z_QI)NV-*l4FmKsO#F3?L`^@3GWMY-##9{bZGW`N-ee?0tszTRqV3gf@77m1#GU6vtU|1VLhlCWRTjI@i7pO6n;8e$Orzh?ROR)R;0soN$wb%uiQNm{ z!U+H#D5Y_6%xVw;Fvl{$TBut*GUlX;GZJ=Y3r5hqtX^{IY)quMId_PIj=l$Cs8ItPWzn$hBe zfM}=kE9yM$g@C)MiVEsSAgOm9C#ZMQe2XJcw9O6AW-`17TloC#EiDef<7}pEf*7N$ z|8+2v27NNJTVs~~sVUq+t`npt15y+p{@WEAp+Q=kyjHu|@=yXwWjY#6d~oj$T9#al zK&M2$&O+v#A)MT4z$`YKH$pn|@^r{hpZq?Zh@>&<|JXqF<>ZC9x`UC0 zjVz{Puk?hA2T5}jswllu6bo3yaVlx9kjy8pe>hv&v_2TLDg@7nT2Lr5&$LyQ(SDLdFBllcUq!o2e6skXoK_iL<$#^-61PsJb}q-T5$qCP z48;O!fOaRk0NpWnrtj6eayug=p#X4vSFj8t#SeCqFX(oSU({bXydxKBc2IA0hPJL*id-(dW9jQ0{Y?8D2URZloz-Jt zP`)^OU6|ee$(45XRui}*0;)AZx;_5VX$@Y}8fs=o4rjDV=sM2-=;Gghr*!M6nw_=d znCdz}ut#a=v7Df?)SrO{xwFh&tix*9zy`!T!>q28eoKX{sf zc~_gPRE>7r=fy&^mhvkd=^fhf$mYgZ>smLtsUG-}+_j`~`$IoKZvxKWZzT?{Jsx@N zV`a0Wr@kZvBic>eUhU7>-y}^Gb%lcQGJ4$HY*F8B6 z3(Jssi2$LIMOJxF3)lHV}Eoq|)&FRGL zChXd;@9hBt|HRA0FLI28js@2_g$iC{Um1RPhDM2ciWAA_&Q#u?)I>2efd{y}I zdbN;&z-G42d%M@0suLU$>G8<1Ro|C$?GeC)IMoNF1sS2fxf=R0l6#Xt?EUzA4U8je zFhCZU4q+?@&MO_txQb8i#CBg-Oq789%^b_?Zm}*s#=8np=Z)sKGM4N@AJe1zLK|C2 zcF?kzraSZ;hXw|bUOegqtJ6-^@B$vWo~%8eHal8ye{Q#`s2WN$H;#NJ+ohZx{-m|F z^u}k2fm?r2pA?tuRzCeD`vrfKb+ZUi|bjzo?kDT&0R4e#u&yHnd#j#F4UBCXI~ z-39Jc?VEu+D%BDQ6v|u|Sn-$Y1X-F)ao8gsH;u0igXOv23O0kVkBclxf^Ejr5<&f6 zK|plueo!>;WG{upeVc{;kRxTr2atRosdlA6@C%iZ<~Fr+khqPt0~xdVG{zftCr%k~b>or0HHS&d{?P0mt0PF` zwWOboZFZgrv7<-*s)mGR6tw^~H7yUaNSkg+l1w!y-*v~X~&z)ST_7fCzSFE#WDOB=Gd6S$^>> zJpTOU#(JK%{YM@b;;oFT9ZuW;S=S1ri5GzZbeXKTI_X{MQJHSjQ>SBB)!GN}VwAUw zZ+$Q{dpZdRNA8BGK-ee#L6^T_#u3${l+D&6_@QkR@ooP>cry80fv&aUqI#B3MZ=1~ zl=J3qfjYA9k5qPk+Hb3Hc_FL*jH-{-LY|d41C7#RfG^-%NpI^Ww_rL|=GU0Ze~3ci zRpP^9EN|dzR!^#;mPoT|aLCJn3+l*sD$pjp1(-N=LuH_xRH1c@HBPq5Bigr5MirDD zw$wUQs-qA;`GMh%v=zS!V?F?>hr^rpOFp|^q7O&N%Ud_PhSbHA&>blAElm!jMXn_n zSdC*rzv&WxFKL|XQ~JV3&8a10gC%(FF8P7&%J}Uk&c^07duJUdROO6{f{N5-`rgl| zHF4APh~H2;hK>|P-t}bPPTTtA23b_Kn$O&Kl+i{F=x7oi#5+3-!O*Z}r^Xs==vp*- z@V67ZgQlEUBPHk9fuSUqSbP?Gd;a*}`lZh(#QzCGXlnkw`NMayYKwq^7lXc=!JrE9 z_PYQc&2+mR3dYZMqKgkmn3L*aU3m4f`k?eB#M<%ihpz{}tV5MwjJtn4ji3WPN$R{T zJK5G|TMsWv{OcqxZ}vt2r$Rw{x2K3P-m%bw~+q-DsQ zL;(0V^wl#zk2K-5u8B58?fgxN3il#30iT0$p z~ z?zs565vDg-_p^QctbzLW^rOya`}h)0NJ3x>!zw?v40>i!`Sv}#6T()rHX@q? zM=MR!d2LfDL((eyx@*&rF59T@*}eFfhHV$_QsCa$TQ_g^@%?-y*{NZvcgB7t^xZns zDg_E%jyB|}P(P{I%oa1buV2H3=vCGa4=de6T;y=D@QiY7d)6{}dN%c<^m7@*^qnX@ zdvTyOX1UC-Aw`;yXa|vBw@|l99Mu7RP`FAN%9Qy^&bFN__8uFu@BrRzlH5cJ9St8M zM=vi2erZ*6LC7%k^}rd6ngq*#9jzEOaHY|jk$);Y&74Ty>5+`hl=)Ue><}4)w-` zS@s^RNMH~|X94PfDzK2T)WrCvN1s$6Z@O}gJ}hUd++8EV@9)A!UqC?Q>WL0*Ed5xh z*tfK-MI@n)e{D=CY&nm{6fpxbJk9d5TGXbBwfYjJmSwJDevCg38>Ce7@b8UKf(LYu z{JQOXUKvN6>ptHN5eT|m>2kMX#jc0MLIe8*kjTE&lGR(G z0_(t^;FTKVb(AnSSd>5!Jt|VopF^4NMt9rb`s!wQ$%ho5B@(LfoIelcx2LW{2;We^0apPD@bcCi@@%TRp+Z%E0np;aaR!+f}w(UHu*c%s!`WcqkYaIi0hd zZY|8Ejk<=uX>0R`k8S~}S_}57C3SO*D|L49SgD`7W2sR`&HFV5`(#hTzn)8KQ>4=RF&3 zwIb#)Vpj*kPmXL)DPT3AV}6{Es513|5-A;q(y0_f^E|w+DD9l{zeM7U@C@M56VBW~-<)YQaY<;K5(1JG-4ZrgPE6p5G~fG&ttZku=q+Ab+|G{(?I z4CjZd>IdEqf6Cj0Pjwi$7CV;)aW`D10UQiDBot2Wz!Td{VP8W8pmPlEkCI2ovJ6AtTI=}8G>B27xNdOOBu=9P<)LV#PrddDwGEo2Msh*i!e8M`q+LBZ zXh<4cfScPhmoadhW6X?3`UV|wY1djx6LfQ3`C)5|DGrfndC+Gq>sEiv7>Ssy zOj*{<4KQE7D)N8?Y_o`i^)X7K&pZRg2TY}}farIKn{Bz*+ip|{tY>3=b`+C3L{%dD z&Xs4BR{L)2UFr9KI{CGa3qvo4#n-+3t9l>cqdU^Pzoru^St6fwr<}&Bf8XhEZaZC+ zX4bw>vTN#E@afIhXBloZpX!mBC~-HJ5r}LYsvl+p1=xESrISL100yTue{euEg|vY5 z0O0`?zR-Zku(|^f){!Eya9g+eQ3+0NmO1h7-1<+qoh%8A*!BtVR}6jDvLP0>?{il| zL&ggn=sd0xYtNM7F&$8n$R^I^5EAG$=l#rjfxn<)NzuMD;c3p&a-|I2uO(@$IyYEYcC(&(KSV-2bRs~BF1KFGS-~=K43(2l}k?39Pb#6NM^gi z(9PTD;5;8dry@__v;(CRCb&CL93+r}aW&uy7Bx$7I=5=@`TLBU1T;|Asn@^;R}OOQ zS{6(YvDsXcUOY^C#h4Zy!AHfS7RBS0{P&odGNpCsPigf=YqNf65uc%%Xx$B<0&V`J z&QkFwROAKz(ory7AI_n(^u$C;QvIb$JG#-j;$AsNZb=%Vi+#|>`Ycl8qImnH)ZbX( zYCV1H&RM-hKx8KsKqQ_RA-mTtK47mk086K>PkuFMPh?dJG#{uYdBuF62n1#f)8M2( zrXcO=hAeT$rf2Xa1#)VOM4(v3McNaYmW`e8IhD7G&&Lz&29QP^-)#aAe_hIpaecdx)^lzQ%>wnBYEbN_u*5%1T&E)}0y!-v1Dr*sfUMv8 zL&FwSmSSq66}5X*QT32yRWBxG^PQH{Jvd1&J^Lo}0vY$F9tHsjwZ&h4MlsDz z|CAPZE^jvanHQ7rlG6gy;DG0UejjmPMBGA+3it?|nx?L)?QLbv_e zN>gh9v6e>;;tj_0R)|gN5OS0%`ZNCF_H@VbhVusq3L(4azsl;8i|oMQ|6Xit4GPBj z@0{$<;{X5pB>YqRkJ7oQd<8KY)3*)H0M>uXaU}YqkYReGO*V|kBKG#}Z&zp1iU*vL zh*~T1XZlw=mf0AmEp|wyQnKXL56ZlVXUXVyESi!R`H929hWd-kx1zy%eqW!wRswxK z7Wxg2yX~$dg9=6}4`5#B>vFr@25a_e*(6rpu+ze_HdX!RJilzqo&;LdLRs|wM}!<- z;g*Kx#NV%j%6!zY;(b`d*yMhSSl30mAD^drf2pb6yw5I0A_2izbUE#+%7Iv_b4cu< zJccb-ia@*{?tXs94NF>FUWUsgXQa6GenThEtmH*8o(qr~=z&phT5D+_xv|fL$d8@D zqx>|mzV*g4Qb#{kjlD-Wm9x7JBbk-gYG?g%YRsIrW`9cf|M>duKq|lgapPW;y*F3N z9(NC`orbMNh!i1GW~fVPixM7`q%_G$87UEw5S5UX5y~D>NPg#e?yc_a{rUd>@;K+b zUgvdQ=e5td&-1eM@Wmjb9~(*KMs*vbonFoNXLmj-HFf%VBP+}4X~#m?&8U#s$vL;? zr$3B&1Evm6&5ii@B`SY#QMw)#Nai8^njey%9`EV0YYuXy4?GMVc%qwc9W*B2rgC*# z8b{od`9=rXwLfh-7CKro9|&)C3;urk3BIy;G^Fw4%a1kShnhkLm%)qsgE~fjoiQ9M zUC1w9>ET{g@VqteEG=q`k~KhhW?Zl%Psq(+)<4!zj_41iSQvGS6%TEgPaGCY+n-IS zcZqoP3p@Un;|~4Sbjsl~kN4$mthNdtx;*vuwC=_Z_}?Q*<&nyr#KhtM6%P1@#PCuKcEjjrAjakE=2yo+Ny| zy3Avx%Qxz-hx@lEXOf$EDG&EW8U!}HE*MYhh*}Vq0x#R1pnq!GQzfl@WdE<;1X zHGN+(Z?#qXBb}BTWn9Z&dPH?MF3xYW^WL{FetqNao86!KOvdJia*H8X(FU1R-nm5e zfny50q+X0W)HDZv&;Q;r^V6w7t6PCo_1UB0U`Xc2^6Szz6$WyyQ7Nq^YAG6aly~ox zZrQ2Vd`$jXdeqX2&SxW*PF?5n>cWITpjV+yoP(z6NLZjpx_0?x>pT_GPtCO!*M%rc2gxKm+~t@`ayAW_nd2?8@ksyU`>^T8%JN6 z!QI0OQM+2VtcIEY_txd^z}OJ6g_Ba*`HBt?tW z2#HM>O!wtT$fV>Zueoc@MDB`6ili^b-LUXJnpYv5 z8xXnT%z2JX`KOH;YY3ZEUhT^^H>;V}Jc%LS8+e%8 z&9>+Knw}h0_e;#RQr!Ca;~IKqHiwT(b&JQ9yAMru(39k9k5Et5sil|Rp6yF@?bw9H zPKgmTYsE|zTOzA#QJMaGhBdu=1NoiLO7kzlp5neLx69?7O_X1p|E@hc#0xSyErVIR zo;MI}a(u5%$Hhl#TO8Myw%IMAhZk^)wOWvZYN)4H@m};aQs>m*eb@AvUfqg0k(3*G zNa5Mch~6u)2Q-!Z9F$P!#lWgAjLzzW(zJCVJ-0+Z6X{FzZ5mRP1y6Kg3pX#Otfuw*wvRY`z$Bp@*(lhEmQoc9cG;oT=uLt5+!bOr_K3P%&Y8 zL@A5f?xlP|iq~f-wMUmqL{&nmZLecr7>JslOFrX&WK;e6Lz46Bek5goYBX8Xn{*-Y z&6GMer#|z1CCQ!h(6wFfDV+^JG_CGWz6j7RuG#X$vn24yrd0g;yVr8ECI~N%>{&TQ zK6_`@(a7kqq+D;7ap(Ke#9g_ec`o!(S!2b~6MRQh+NWP+^iIZRU6t>BQ2c$ z(HicVO)3yFsvqm=raGRi9J-cYnly9Y@Z$?=#&#j-dtHsKFL~F8s^UVUZAFL7@9den z|JZd|6Di9vy*;>p)g58}zzIy&gY%Vz1sMN0?Kk?~p#km{mS$zad3}}J4DP;8rjs{2 z`WOvN+0Fq5YRmkTlL%eS6(nR6a^ zjsR`1-wxZMSqjo=IhptEJX!g}vHzU#{iPk@=h}mZn)h*iYQ8Q&!2HPWkzXFmAhh<(+#?k)$$=Tmm8(l6xzp<3>qGQ!+ zWiH~$h?x#=8;MQl(-(y$;vO}`AJ0^?G5<9)3HkZ-wj?uTL-jDfE(0|{r zQe&yfkb+M9LlE9%o6FXF8{2(2pWb!&tEmjpqRe)-zpb+Pn9X=v$q!@qfa!zNqvgLOvHFtO?>C|X^P@d~%npSHEbfWP?5LxQILvTl4fV(eOx=6v z9hs+=nQ9nPP?$=OViw?|N_?oQy_G?F-nX`Ov^r$Z!;4JWk z=pFG6GrMPceN04#RMd+0`^5cy%bM^Ns4Y29HMM*@8%r1{K4c1rD1N}=fJtv zuNo&C@VXkYLaM9p%)ZMj5qRtAy4Ih2cT+>9P{^!Y(?|Uui*H=t&}pQf2aL$if-Rr< z-nsVpTn}-B{XxUW4q6yZ)%yaiVln4doPRPxN-a)pEWW>FR?m7+(%gH*Ds}L5OHiD| z5l57a;h_F(i_6Wi8JFv!DVg<6pFQ>`YDWZcW%|k35#EXE6iGEkj5wRu2_+0Sms-_1 zzq;(@@i1u9YV+%O1$zZL@yrb&>0Dh(v6OcHTKie=EX$W>_LXL@(s#XrQnWg%3EI7e%_m!g#Gtzzq}aXuuw05k-X2Lk=Aj3MetT7H=O#*Sm|L` zFIn}0{f`x8I~`I#JJ|;wOv^V=`gyL(a0d0QaQOyoXZc8})1vPft&$$Pca-N%N`!iy z+uHk!8s5>_VT%s2VO}7X$}k(j$NF1%F31SkDqP$mu0S0TEW&R~3Guo8SuSDu*2Cjp z%{HBSHSe2cR}je3bdl>WV$C)GBgF>);?-816vkL_&@Y8q<6&>J`{ zl0rBWFIC#)DLWA7O*@2I{J z;L5E~r?i2ilGbunq|Z$Fx=9PqvaT+Tom;wApPIO5x8s!e;ycPd6k~ZZTk=w6ZUAKIWp7^%y^4XOYc-bVM zvd7Yuk+Piow%q3FUGd_qfeubCLo*?BWMi9eMN7^BZ(F(64PuF??$Z;Tr{sK2=c!i( zm}6^B<=(M2h~?j0{AGx|P0p$CxpQ5vi}?6q1-tfDducLS3JUFR592f)!rYc%R-{}B zxE3MS;L#iD_fEi6C~cTtPc#&)irl8w-mOUzicI)QG+m=|DNEkk^rKt6!aLoZ*r7WO zzP_M(MilE6FdCk4SmGzFC%QLEYErVPYL7?p`&;|=r@U0Ew>ck)$n5&D;3lI#_XaW+fNp*P?7`uhCaZ>OEz zuL&21-5oDG@o?*@o4yCCnoj>bt4h6GoPEE(M$^UUw5Ud6ys>%xGlik23g)Tz)(^~v z@3K0#;fR;iZ0XX6tDfdW_-$5OSz7&M`Lwi-*(PF#QiOJ|>?DcszA~VzvUMgIPY%zM zHQFpQ#5Y+GKV7z>u(^eYO3!X>_iKZ87ABO%IqT~@SY9_(_QI_w=vb2Qa?yj^Oq|Iz zXnDRwO{beBSgAdYOPlNpn!mkWrkypl@j%hxY;?=VP5^$UUu?@n2v~sNyBEAFx>FGq z5SPittDdEPN2`C8X)9-5Q_j2+;N$cn%HeFlHMe7!-016jLl3S@mZm#PxIWE^tTC)bN=_Q zvY(s9hIJ;s=qLw|Vx5UviG2%ut=(c~ojWd@Qrk-FMO-?|iYbLD+w$&=SQq1!yILlQ z-k2^*rNI@`YSUf%$A{><+XgnaL77j*YCiK`GXy_*Dpkx))mi-@TzGt`a9$pUwtnV` zm(E&UrT4Lyuf%5hO^KcQwA?jhYTI=DEQjB+s5whNryP9Xa;Kf=UQdOU8jINez$gF= zAKUEXh1a={q5Y0##@ua=%_}cFcqK;O`dBz^?^MymYeLbs@2L7@y0CAf^tz`bM?-ju zQL&d+^qx35AiDNw#j%H7MFyvYQQE&^@AxV7i&S6sj6Hg;PW8v@U@4{L4?XX1Q?HA?}9hY0vJN(S* zqlK5>NyjN~bdz;=csM#szfpBAHl~ud#o$WlsKAd^51TYkQJ0wfoaNpN}`JQ*WI8n!3dYo~y|X7y&&K*73f zvx@B2XW!2~pR7D!c+54Q^oF8uWa(cT<=qw%WP3EzWcwob*!p4@Xmvc71SB5?;uz!| z_HZ1-c<&L8%>D*yaM4qtK=kNXc9$@C*JgG&#@Q{No%}&g*PZdkKG$Z;Jc?CM3 zd@LADn&?+Ki`pNQ@F7#{nyqxKaWb`^zEtAw^Dm>8r_-ID3q2RSy033wsF`!}bn43c zlih6t-5sXeQ|a|w>o_EJ?jEEo(~l{d2tMz#cH>yzv`$giCU#-lg4f2iW?CNWGD^~S zUq3NjmTP_Y0-^F_S6nmriPZyqGW?=VPD3G^}}JJ+#1row6t%F9of<_kHZsLhx+&rii)m?w|g$oeRfT4SxMpJ{1FviB2ub;WF?yWuMtD z)B_ewcS+a}KqgOe);E(5-E=ypNY9C*Zq?hSF+CX&EWE1!M9Azwxb@9|IHR!HDDx$6Hd;h|7>jh@nvoxBIDX@FD_=oi1TPz zOJj+9W4udKS?!}Ac%jz0@B*E4a&Aq9^4q;k%lWz6G9IH9@N$CfsL4^TH&=eqx8~h5 zFn)euYyOe;w=zK$=T={_`*H{?7sc;#Zk4TSgU6nFsV0HU6-}d?_wRU^T{q4D)Of6) ze_$b!!1;K|sp4&)WQzix71qA%XgDq=vAQkk#(W`h8Pt@<^C;R-Z$Yo}Y0YFn(3`&S z#Y;H1?F;p_Er)#{8yV^eTZ`&=EuY*;U+#F^AZ@Ahf!CRFPdmnJ*N|`RQJm6D8eQLJ zK6>#5)$g>(sJ&?@EHyIm4|Y?sDu68s$>q!{j_p z*2H|rwCs6#_*^!o+PZSB*m@^iV&)8(=DEOc0Dm-z!C@~>W{ke^Dj$V_=IF(=a0ah}-zh7(` z_t^7v&69GI9{K&I7}CN%&mB{$^S(yja%!;dmNsBH>M11~s3OT5ND zo=}Vntk~`mSP9|Z3uo4QZO2z#7kyW9o8Zn#Z{X-cbJ*gXhF>agaXcI=-#K{1zjU9S zm(*bT=F&@3c1iBTOJ1j=$g4u)`6$b=ip#ORS`n1*^Yc_T4OM zs}B=))r=SNPdj9P#wd=*&i=3vqXfj)Yu&DIIa$Y`EfU z2vPB9XqEe{+n)WWvnQtJ-r2s^TYG&;uvE|wHT1j9NA_!Y+Gm-+Qq=Bq(TYCiq<}WJ zk($FMtbG2Q5c(rz=K5)Qx$IU4JHDjR(LtLr&k_I6Wp_f%KiXf_rJH`b!2h9a^O6)J zeBjN2;Z*wGrs9|nK6^i29BR2;%ZJx~brmypT!-(W#w&~C!%y3Nb!09MI`1j<#)UWA zXS_krKBcT&b&T}MGPkjQ@l)IqfsJ*lI1x8}RBc?6hilx}r8m<*k5BD-Mh>jt>5cn( za79hYX3_ER;rdxktZ&Ygx&CVdo&!~-j}Nz}9Yn1o@1VZVO}TyUVeG8O z=w`Rgw?1BVzyIt4>5=C{T6WVhqp=@J1N;IT+b&jc)X98#V(Zq`==9O(Rk*GJf+-7y0fDH{&!G8zXH@_#Hnm{Y zF4>wG>RYvzz1m3`e&73(cmu8}T|80- z*&eiY?&^yA0>&G;Uw?M+Sg^kTwHaCMj~@2jo2AtJx6>c)?AtZfQ)cx1{VmJ*v(HFZ z1Dkw3L{+iAzG{I}7GYmy_}+Iu59pq`y@=&KFzuu5w=IfQ^9&D- zs*x%C+{-$PQq>VKS9PELBY0nTp{PTWO}X*=Adiz7iTvVgGZN2>ztc|IeG}cj?ehB# zq+GxB9rSoNZJXhTYnBKoTs`ZU_-X5s7%mBUOtHsaac7Dq6X3 z+!<}VA$fDk|Hi9>DjrXSc}ATkQa{^x^Y4@~Ylb+P2(R!C5I{Ym<_j z12k4NomnH(9~)OF7ybFFt=Pi^{{e3G6`RPWFFvo{^eDSyqfM-W1%GtYLQiR3+U1uH zhbO1sq!7i`sY)k4d&~wz&RkL``hjzBa(YVp=_`(T8WM2SZ>Qd|H4VN~^s2-2{p0k? zpF0Tsef#?7zU1*W>pW2v60m+TQGWbcvWu1WhVCC8MW~HGwG`;PtW*#6qj&~>_~l%i z+;2J8uT<0D)+;8P$FsOF8W6ny=j23`wD(h;g1~eu?4D{5n-do1s;V^13E$}WDdPFe zSC^l>z0pyd`^x9X$c9IrN6HN7J36lJF_GUr^91WR{>dEj>*aO~evigoyk;toKCPC? zahPLc1HJDJW>>J8es~2+_q-BrqS}gVASRoa6&PsXj@Q#pol7pDqU|h(eHkhY;?w| zplbiXXaOxJEOyKX3Qyb( zrMcD8rqtecx9$vV7TNNz8E4v!*ix=XSL1IW}-0;LC*0hG4Y|BzpG5 z%(mgcdr&T%Yn5`1M@A*;pKqk3=^h=KZYD<(*>JoH`j`LmL&pQL9`WJjh zuTOXEpL4WWme;g(`MTx0$>#MmoitTw2 zxEx)4eVZGPZrip8qsf7mcBZvu1Hq-+YOC}-L60#`}ze$3uR_F z+DO0FYAew>zn>A&V6u5qasG!<~Ea~JU6;fm)hh<(bnnUlWGZ>rvZ-sQU#E}OI` z`gPR4Z*LxrrFLF%?G>|co+m%?jm|25L~&a@^1`O4p>S(j?XMyKC8gtUh8L4x?b?_A z=*7ZVzu2m^`K~$IdF}i1@-AV2+%DGdD7!D5!C5TMT_`Y4eyH5L#W6bXT_A5(NAvk_ zmaa8XY0+=&=H4$@*3xD3NcOxLo3`=u**m0NwKwaCb`E$pb7x@(RCmv}eN?@s_CV`* z1>COQ-g33AUqrOdoN|`e-k8h7-*HRO{JmQ1Yjte6!yU=n9b4pg9gs^H2ti+ud&P0F z?PWr4m~5)IRpmZ~-Kl=FE4v4ZVjTzl?&Sw#l1cU};u^4y;VTp-=#mk&lL@cvcPS|! zPLn)QinG2XJUu1uXHL*3+G+*tN`98=0p5Ggkv15z_Q-{j!LkspuV&$9Qk(ho#Jd$a zUU;k;;ndpsN;9X6^PqH?T-$WcO?wgPHRq2Wm8%KL;j4JjI+CE?nS8Wx&`hQ{h^+-(w^DaAp}5igYDLe6tVQ-)TKXCA$F z$)JmCZ^5B9Rk=_PwR=LL4!lh<&QG9_bIwbGCAA#0LOt%tc+=!8eMfj4zE4`D?A+7s ztJnOj!nS^<(7*`#;$&f9neamGZm9FKbTdiX8;#T4mXb|EgVR!KhqJ!iID@Y=KYh|k zcau(}B)`M-S9Fe?#wWK7_Aw zJSIiaaV@jMUAR(s#oPR+qRWQ^yI+nD7hIJI5_;buE-FxS(POvQ5}kqqclThO1Ijy_ zZ;xCt$ulN8Rhb(Sj|N_FOr9Avl#y4MA3haTW+U7-Ka?lKzw*bFfLfutotSv}`-uL$ zL*FZkzDI>n++R7=_uIPmbt|a)(XZAeeQ47CB}5KMu89!+qQ!Gm_FP2heQYi^t37)o zZhTeE>%zGb%~LNvugb0|)OxOYYAR8weaYT1_27NyB6z=ZDSqO2I=4sWONin%A^pub zfky?Kci;-8Z^-b3*jL5ROKS4S?)OpL@rm-%DpBD}043}7!E@b4w|RrOC?(=gN%)tT z6QL3E0Lhs>7bCKQ%HMY{X3M-A(`tC|d^cypPf$WxS*Y;|d~v=Y)x<*i&LYSDb{Xi< zdrt9!i5#v(PHrNWR!~sRwS|+;k)ij?L+^Q()cM&=sk~k{;_C7HzZL=?1oEEuNXhmZ zI{qNQvG1An(3qgVo={x9(&h(aS8QEhUA;HGTaagj54)xCmt%@t?;b-T>zGp`+YE;T z)|^QTG4{`vA6cVdz7r>Y_lk)BjhxiyBQGafo3iBxcPsPD-agW%D?BivdBc+aygoCj z^=Xlu}5#jtt@s(cbtKOJ-%qKp4d}6>VL^UZn@BWAP)z`IF&i;rpRq_FE6dj(^ z(DW+4zVPh?Wy5)%M;wx^Ri;8Z(^Ps|$7nKXV?qyRWv;||oxXFoGO3$$uPAQr(r|q* zo8g20P{!M#*nd3yY`YfU@Z6={pOy^WT+)$tFX7Grx9i6Thm0r*FAlc0L{@o*tTxAA ze`{#@_}YL`HfDk=<7l{ywo`)XDatA(LMMl@zF*wl=<5rr+VY{?%a(0h%&(f8=%T;L zwFr$4I2`(5@TPS?73-{dFuT6Z)=g!w(|*wPcI}$D>CHCd+^V5`k&mWDhNJDs!%I#4 zD;1o}y;4gp9+YpXt8r_g9r!ZvR&<8G+JE)8M3JN0zeY4E-TubW(tDgMtfiHEeA7$Q zh^~g0ycewZ60wxq>vi*w$gsf99(!$*n@FD1}R zK31M4I$0)P`m!{%ly^^Bz-gOFXHkDMx2S>mQnSrUIIX5JyJlEkyvV-=^Ic%x|D9mE!S9#qr+8eV=e)^)Y@WL3>GIp(}m6V%GLo2sv>b zTRd{5ySHxjK`|+R6BUE_vBKj&J?egJkzbqtEHq|+zH(H+Y(?LbA`hSBMGk&RtJQG4 zA`WF0fRCgi-%8}d;UM@2iriQNrC{_m*D6kW)M$T9_e^j9;!TdSc`MY@z=n6S%D8BYiJ+*~HXot^yTlgT!Z`yZ0uNc+P_@$a) zV|r@y?MLlC4eOJWyGY+WA6qu!*=qZQmbT^@$I|xk@#B_`6E@DeIZ?jru=_)(rI; zj0*WJ9+^y4I2*&kLFHeI3GTL2Ft}|Kwx*hIR)fDvp%3!={3h<>PKCmJ>VD6>XFP2~ z2Ryf^RaKbZtX8>vGkbi_@$tu5QNqf=kro+|WO_-GQl_(WsPj$k>{t2s%xhb%ZLiG8 zq@(t1jlV8)X6EXVV{Z7phZ}lIi@({>?m%jtF_#-duBSsYM#ddeRxR~)A9eTiSzR&p zywz~PTdm6H$k^q?oLHHqpV6-?QgZIQYUW#SGfl$Hyiq)~zGPDVn#7G5Ih);i-cv4W zYiu1Z&`083-LHWF^f6=9gCXn;)%mZTa>A z{BC;(^{jtZ7~#W0<>or=CC+N8c+_amuVVhKj=ft{OsTzU>$?V4?-~{Hjb3|F2NeS^g|vPu*d6CdH%J*=HN3VWZfrfwB-3x^)&&=xtI>S6N-gD3h3u?v>4pzA)GF8Aj_IRcKIz7+!_lP^5{~OF z2Am!77Ky7@vhAa1Ks@)DQsolRsw>&C1{s@{ShROZnx+?N*JG8nQ zoUeF2{d-RY4{_>osh-Yg;3~*y;J(-dDZXI&-nBa?9>mJ1HSnjfncu$7Z$ybRK94M8V@q~Bmfbs~_h9;1 zrk=s}<}6R{`GSZ!QPZyJ$m0v%JC{xRpyyX|*-6Bo@?DhI5#3hYag!$OHq-H+%!7M_BAXLCKgx4+cmO6U44)Hs%`p0R2)qf5fEJMrlz?1{amjgBAq-acKa zapv&bE~)6-G{0-$3$Ge;YdW^(-X962Yh16_>-J8giG^_<2yX^vv~;?Huz4oTIqO zxUi#EFQ>O-%&8;ms;ypyi=`}@;yEU|^V25sX|%wS?OE!xw+Ug2Wl7QNymGtN&D@Z- zdGP3L@I)fN300Z=DNFVi>J9o;jopVyS*bW9HTfj7FL$`jRv5Txu8m2zxbT>=V`SGQ z)qtCGVKK)v-LdEGYp-tNY0>@Ir$pZ6zopj0f*O?gDfwH-$EI{>DrHUZsc@U<^e?Ir zbEavEv?13TGtG{lQ~pg2-!>kUxG;UZI?8r$k5U@Bzh+!|^AGwARJL`AIHa0|YT?3D z3Kp_ZLY(k}U=E5Kc@WEGK1e@A2_r2UdCUjeBW9P$W9Gx!eB^;zu(5#oU|xtq0VryL zZ4u)EvU`Fm=3A=2fk?#=!CMzAP}*EX8iXrCNh;u%>RY)S-sj_w!QrVGEXKyfeMx10wB_E)=0KV$Yho>=?3xyE42i)OI$qCD3FN zhD?ISpP~q8G8scA!;D)7U2Q_~K_^O4L@qoHDk?>VBs8D|&=f3&f`u@RC?hsL>wwSW z!E6?%vXJ_F-g;xkyl!X;0Yf3c(5{@|N_`Wc@Y)NMfY@&ee{Tqdge(e8A!8_H2=g4Z z0}LO}K}jiK|BL<)5Tufe3PMw87zz!6;i6)pi5x%^?!Q3LldTMz>|st*p}dzU6?mOZ zFB$7ZQHdC^Ri&sE(8bp%8E7mIrOrhqA^4zcmGI^?I3;lbsGzPE1=b~wV*K8O>-=K6k8H|TS zYQg6Ivtk?;2U*pjf>C%3IIjm1YrF&~EDlS6|GiX=(t(fhVbM^=)BbM)a99$81x*HE z$RhTFNr8w+N)T9NW$aX4fzC7_UZC_zyi`(A>PzcC#*i4uNr=<}i}c$T{((K#zyd37i>wVp zW{^TgpfD5$p%jEJ3ghW1~mP!5ZbwU|;SqI|@Ktr~8?DfO!!r>8H z{o6T!zYN-N3=zWM2nacjkn=|v!+Kt2=&&eS9ujXwDGQOPnt#0s4vHY4RU|gTRtJC~ zRD)T-6hvtC3`!D(B~dgX_ZEOAT#8po0GXFDfB@w_;gLXNu_Ur4G~5hEIJfgi3lR`* zF^5p0wIx*hnRs8*C9q*C)QVMkXY!|_mZJIWQR8wUX<)Q%E?&i9}&2=r1|Y#7Xf zauRp|zp=pQM0KDH0qK7i7!?ahr@)Z29VmS$LIG^1b2kbjOrfwYngm5e^6Ci^S(ZkE ztjB>MceVl8p-vRck>6+qpbb4JG8cskU1)_D^OT3joQTLTQv#Sm2I3P$<(bNf1EB}w zf2Ii_F--t7j=(Vj2@H;ea21;G08BFK0%VtQfvo^!3qVm~JmS!q4nWi9PbhssGSl9` zaz}O`p^bn&y$1zoHLA|(ufLEzx>5o|K}a|vL+{uwa!@h1S6(gmKJ zYk8OO|79;3%1z*rfDAsNL=i4QIahfUVG$I7=zU;cc)C&8|H5<|p+R8M1qe;)MbV)4 zD?DNh7{yZX6w(7ae)a+);mMZ#nGC|z0TMgAL2s@Hj~pz43@=qugZ8JnISr(6D8aW*BfXF70nVUmF)Rh}c#X}?TZo=9l|A!#( z{wwBihJgiK#+mTK%1b6{LZPXAs?hael&BP|@)DVro(SSaScwt(+r4?jU_HS?@_j%Z zEWQFp5A}g{-sl5Qunuzp`K{?gEdwtS-}o7|0r;o1b!aIrEDbUkKY5{xVuwk$;CIXd$-w2$CP&*+v7{Qx< zfZ*a*~1k8kG)hQ^#4-JISm3N5*3soRC zMA#2j@|IVIv62o0prkT=fDq0`9(}NWP9318BGbTjEZjniK?}p6i~B2(7MM>0RD{1w z-FJ~gOK}6Q0Ui2^(oGlz18;u?W`#BYfGdYkDo9h>CV=naENJ@G4&15FSHSm#pC}B{ ziI?V)hf2qR8A9yb>>z3-tBIpBlreZ1z*sB5c8Uri_z)1m>%3yn^+BK-ltJbuC{kHW z0SFY44e4sN|6b$CZiFQ z26XHOm@9Au%mphiJXi}d=SE9F?lAHAF%Z6hahi~^KhQAnc4SfL$tW-$NZSQ5(6#`# z#f|-LdoTs2CSalLX;|!;(`Z88@xb)r2zbb292j&28rE5`zXT%7{^FrSp}hJGDwKe7 zauLXoQ(-5)^fjJ~0a{xl;#?w1P@a{$n3rYA*+$$5eK_LqCofOP$V`cfP@Y(K^T1QoMmrukjs6vo*s@7 z^)WP!8O-5m%t=5f5AOt?8MuK-VZ#Wi!Me~4TQ^wqC0R6|p|%(t$ggmhd8MK2Q^1HZ z%px4z(`JF}+_2)6hjLJ8rs9)lf$SU30snGH6s-XbEdbs>oJE{N@{853*L!hPbcdA7J{tWx$Fd z`-F!gUIFR2E)2-4b3u!7<3QBo@(bP#u#HgKY2Zq&q`}jL*F2&S`X>O!ec{pP#seA` ze*x=tcMfcb>;hO0f(WcrFuoN{h91m=p)c}z5F?HTnF7LM1}V&R0gq=W2teg4fR=)E z=Kx6D0`MfAoWKHL76E3}WoRr^z5px*Y(hkE6cXz?3D9a-&&w8o)i}@%{PwQ}P=p~s z5z=Tq=*0rC8)n=<8-h8}!ttuVn~eMs!J*=ytBb%sA;T>4dBq_iPPAzJiQmJXq0o|W z-W<)3W-UR^Yo5FZ3 zfsK;f4qnD?!)w)oIwsJ-i~$*kEYZK=qAd|r6zKJzCPX*!z*Dd1`8}#u2KM)OkS&(} zXc zrjQUw(6uh!1JL$ylqeU7xp91GI4nk#XjlO36^;Vs^MbvCC*)_D5VDTvk%aE@p+%tL zc_6W{U@Nj}1~ZGrGxI3??*sq`N=vW4gC+c<^-N8~0GVb4L$J_8=DQJFMuQZW0>Z%J zbSl*1!@rlJGeR#C_K`xqz25qy&!reKeAy=T$ic=FVFFV1s&=G6#at> zPKXi&L1(-Gmo$-iz=9ina-(^`S`=2;|`D<9~wLKftKo z3ImP&(+(-D15U|O2rR}-gstO^27ss$0uWW~9f)DrAPhRzh_XNk!EpvyIS~ith=P^> zo8>~%CL~u- z7Xu4eF2P35{3sd(BzO}0#z*+@>Om7IUPYKKLJ&q5pj8qFbjV4vL6_VB1SX0DwDIg6 zz`2V<5)uHS90d|-1QjBHu=#*u;EwZBzfmC_h=X4$2}nmv|0W&jfGr0UDG4CL**k!T zmjH>^s5IJ$!2)DBY(WxWVGERDLj#);ZY+?v&oXS|VN(KqhXMB72YURQQWb7IsH%p@ z{bnzMdqe=Dt17n}h-XVXC(LsQ4N^B6T z$S@`v3Cd(|FJ`n;z_0b$#urzhB}DKvHfKYFIJwx?8F~XCB>>m(Mu=e%`S@A%5Gs{L z-;u!J8L<}l%Lq)tSDqlH9^S1`zY*BtAUVK|YL(xC0*%FFMALw|1u2vwhKXE|1vw~1 z!!e04mVm{xxFHBP&!ex1XEjVDrY9gXEj?s4j*Q$iWIP0U|I~+ zu^jNud<77qWl|vSLrB4z08I;94)}R!3(#ha6wqd*1GbmY0Rzxc2}2-Qd{+W21uFoS z*gOzDv7r}4sz%%d5HY=?FxT*BZb3$trA`Crj;sGhhs=YRz!7z{3Cmy*8G$TIgRKn? zji4?K^h%a-NOi_uldUZiWLZ#?CL1gq7(v!rY;AC41l4GVbH8f)}j_i?aX(8#-UI2?#+9egUG8;w=G0h%O{xIKy9ofD51$g6Qjk z_ZlGp)=UwZ(TMsBASaQ}>Z^ z2+>im;rN&U+>1HoHv*&sDHIc^ptw!@t+juk;7ErXTu+9yXuuoVID@zhf$1^@p*(@g zTG9m!nnT0;`3D$Lc>qm=Dh=6Ygf*UvK!Xk#0>6ORkiRe%o6r(M1R86c0hQ_T>a!t6 zOu;-2a4XmI-#J0O7AzCITI~Fq|11Z3z8RJ`*bJpVI;uMI#%z(G&e{YHd{IBbWwi9n}a*0J#g=@jrqI!VyLS~j58GNhdXxjV77 zX9*+iG>B~fUt~|!;Pj9P!fv_s>`-lRL5@gdO@M)@-}%cxhB9u0k%NF+XagJgQ!>&{ zgUmnd8XNp3l6I za0OO`n*cs$Z)^^n5(ur~!aX7qgSBW0VItcp8v(j>lBLip6IG%x8)@%TnaF>wnzhFp#z-KE!dGtT9+$1*%94r*u zv11d2KnN}YIXeKi^ACA~P_!p-~2#0e5Q7nnT8s-rRkV+WvdU!_4jf^uALKaAa!hAuLh*a;8b`Z}? zasjg-;_{oczkNvUf&{Q7I0MG9VLJ|E182EMef|qpti}uP2k@}_UH*ZCix|S7i!Bni z+R3ZWMPx-^yA2RU!a)vu{((no8YJLroBq=Ssv6uR;B2j2|A9eD86=SOzy41T;-N{v z;gX%QLbL!CtW)wGfGr3onm4yUhc(65Lu4CXrdsjzMN}pGQxRz+z*GjPe79h-J7o zBA!u*Au_I4VgPd3cybd#=1^!3mI!B6EC2b`65e+MtRylH z;!6FQNfj5UFzdO2*b?>(!bFA(Vwh?o8M1akOA3-%BQR){1Fyaik%;h$IgW98LV7=X zB|wkJ+juBY0H^Ofq9TAltkMDUvDRH=hpRgZPsu@uP12GiQ z4vzRTJ zyBWBP2A%c>F;ur06A@H*80i2>paAF)U_nQOIN$I}0uE7G<$?%_CNenmmrBGJMIQiE zKJ)}Obtcf5IYJltQyDtD+FgysUS?FQjr#S%+ zIeG|CfYi%_eZdN54zbRNIgD1}0_m!jCt6nrxzNJ4lgt>A$c*)f%nL3=aI+T{P53&= z3U{=j1e-WAN+d+&oC7cclrCudn99O(R?8H1pj6EIAtGB0Z6Sde{Mb1FBN6}$W5%=I(*Q>8 z5Uew-nBnjUMnHy?LfH_&aS_}>g_8bsG$f!^gvkVUJw$H8u;GM*BLE8Sjl_hp;e-!W zxXGXjwe;xkc4Ut&6Jh>?D%wf*cDRH9+NlZ0*oIpihI3&uh(kl!J4%z_@xZChu(uy9Jl^>2r9AgBm;h68i5{RCQcl#7OPy#rWfs7&nd3(Bnb@}fu@qXdm&B#B=faO z;oy%9vc5C_cGZ9`pomn~Qyt*epCGIMivg*2kf}tdCJKlWvfqC@86^)gh^4KffY)T{ z$cFDwkg2Tpg9Mf3gA1Lkln=ud5Hk3!f%KXGDdzMqyvu|cc|VD9;{^P!WgJ`_0z6^8 z32ksa?3(Wt{7?1%W|H2g&@SXwC8*l|=RDZ{fXn~HZC|Fc4{vO;P0ovkj zfwsy&ZJT7lL|>x;f}Zm%^Y3~C7(oGNS+c*0HDOg)kWC@6Es1%j0i;jN{~4hYNR=4> zGh<>9k|T#-OW_p}V}XJbSXh%M4`}F%0bNfnG38E>Z8pe-6J%n>7lCev`=PPx7^N7d zmt;oS%-e1tjb_ZuJh31#Zen0a%zTT4XOv?|kmxgzIQ1Wb)lw8_%RjL%(-ULB7OkG) zk!I|n`KJHJ-Ft^wRcwpCq+V+gx|@b>a%fZ(Bz0Jk+y)F}GYCSfNRp(OLxYNn0YQaA zk>oZZDBwm!RDuze=te|Tl8Q)11QAr;Z&cOnHP@W(d+s^+z5U(q`G>t2l}1&K8mUH& z8K{Pap5oeOYGW5@AL7`T*&nV2vk60;@|015gXyj)SE@>Ubom(ZEcKpBYm;86anbXj zOvg{XH4&8n`BM{PIT9AFww^llB3!W5%VJ{3RA@5Pqx~R}!lWOBs@e}ScM_{OZVHA5 z7ZXI|OG}BsP&1#Tpr{YmH4#^lR()$d1x4JYQrhSng&4N!9>qCI_O*@gNUF@I>1))~ zlm^-@GX80L+Lu~DTvfIT2>lLvhBZlcl|GNI#z?`=XIxzo=|bFuIw=KxpG_&yYT_+Z z7~^DWfz}2O>4N9XX@OAe{L__ohuo;>PhT}8=Z|kdE){nx=&JTV{0)uBk0A~(n(kVK zbfsM(-%bUQ_0v-@eEd#Ozv>x=>O3Q*z)1R7Bu_1!ko`cg_O5!Jj(NM-7TP^S{P_EW?VIa6OuY28-56ft7hAD*8A*YbMe z3oPV|uXu@~iZX!~F+|K?auT(Wb)Q6a?$5!CYa4?bSA=0k*6t7o#EhSV18rn8rmQKp zuH=YyB}c3)IbvPO*j=`sv5e1n65Kw28Ma<8PK!`XO0rM&|hjcXQg^_TB< z{c_p}mMq8XPFR^{k2$L5e1|#mB+;?5si8U8U#~#g&0a~%tD;4UVU9YiK1c1JPuW9r z(z>XQZ#j%@oWKaZ%~Nm9fmiB+Q*WSd#<(NAXfA4O60W&goUoO3ue#ydIA8rL>$7++ zM=Du=*dkW-g1HQE#%qWOt!ylw17Fpn=%DjquhDGIyp(3zxQP?mxc4=OmYr6HyOob~ zLpbs^s4fZD%q@Gq?Ck3f)g?>2b><@Oo!1doWfhC(6f{zM*R%Vh*BjZNQCgr`TXl8b zLLvm5%IWH_>NsNutf!Zg3%v75SId?lVG0V>=mjZ=O}Q58S+E2i*{z3I0dcMgH>^vk z(rT%+B$Vhq?|cm-D<3Cn=jDZIt<{@z(i)i66Fycx&P`#XH&Wm;-@y*&qHtO&STnIW zL7F-LOsTG!SiCT%o=AmPeNVbcsEUhHs!v}=;C9$epzuY_!JJhx_6F0$vH53eIDqysIkp-9A>1k%ZzTr>j|59IboU;*`eMtfWsA>)okfcoq&mx95cWy{z38 zTDZFu{uPI%Y<(-G%XRNdmoe3ANeWmPS5{s;;&z|W>FgI=^n|hiBPkyT-u>;A)*U~j zQ`{JzrGkkT0~}H3FHNbfovQI@LLHrBc_f}9%@gf;4y$4FxaBifYY~SZ+Eztx3tYS@39{a_5Or^b=f6;{xB zwPzj9TICELXD#>`W^nrb!WQJ$Z>PAT(7*PNm$@Sv$1g7xjjnB1dG7~nsC_HpKf#q+ zWuEk^)A0!IK53dzx2$9>x%MnAky}x9%?B{XKfR5#L9_V-`n&yoPk-Cj(CV@eX?4U~ zB({xO_aQqw>;r9yB**H%j-o$4qUg~TFkvIy-7|P$@9)^7p<^z8?Bfp{UCJQtiV?FVW58GToolZMCDEd&kq zr@VXQQLT3q|GI(kcjf+s~jrt_CG5$ zD4#&&b^I*tN&&1aMhYzX44FOgEqpgLl;0P8%94xkHyuxrV5oTo;}BoZI2cVipPTk$ zKjVqxW1q7NwN^6@j%_{8j!twNTFvm&KTk`j*{j97p1>FQ;A-7&^5Hb_zy)~s8i;zs z323kCd4UE}2jBS`nS*)3N~J#*m%KqJAqct?c>>M!ZM=p^o1?c)}Y)||Ci z_>p})JN;p8T4Qz7k1W=qO|0YlJV50la`vXQT*;sC$6DzhuEEs}{m0dc4ImL;XHd@{ zt?}T7@wRnPhV)(|Wfg3c0v(vU`~;536|2%(G}2D)sOuFjt{p=kHb7#^TF5Wh zC*WqgPFkK(bJf9%c5~_zC@$SUNo$d9d)BX0J zkCKn0lrEy$U@o7)OS*r3S|{9S2D_?>!W6j~Q&}tEhTFeRt5*(P)es|(>~{SN9cJup z2C6CY;1}%f9sgpH`fm(|c;lVaPNT5GwVeaC(oIweFJ%Xc;yY`jJ_6_&AMXTz5fb1L zSAXtItEF!Jqe4~n-Udiv*GBk^aV852ntbd1K*85vB5-&RwLh&MJWtc_;D3R{eZzwe z62=BF>yLJBkg%6iDM+BN^xtTar~wkmm9pjoZbtnodCC{iLW?ibT2*&#tu;lWs_gl= zTI$P6jNZUXcmgf$4v-2(zqYRl)*FU#7}u<0HXnYaXEUl9gioRk;LrgoPy4Sx%WR;F zpV5On`d587G8TNQ1wORorJEqDBP|nnU@qJw^Wt){vKCa9FPOKw35fE=uaOz%32Zr3 zm%}f@2R{E2j9%Wt!jtZX7mB8T5v(D*$UN; zf2XmRo~6~;Ck1o8>QDdmq?JR|&&j=}I_Y)kMneE!9U| z9%u|Q?k)|PZt0kgIMQNE=%xM^SWW*O zHl`^f>bmJi!_)WV34HEbw&S-m`lVia%7lu`CnWdJ4{29sm@CCft-79j(RsNhk_mZc z$VJ0camOG!b6Cy2G?2^R$?Fgh{L#XR;NW+6rFBw|2GX*mj%<2XULqwXjFA?~!)eW= zV&+Y$#YOXn+UmWofyzi#;ZD-n?U|Oj9DyBP{R51T0fau(gm0MpOFuAo;b0A7MnATF z8uE_WH>sZA=zP_NBo`gKgC%Bj1vzzVB{Y3{QiDo2)dg}=@sP_{jg#rMW z4Vg56Cl(2UyQ=Ok1#6_LX|ce2k)MAQQaLRUYMg?Tk#I2^tsb+{>THiW2HcvD+>La7 zZQEE>3uzcz3he+~>vlRxYDmtcDDZDN6+SX5@Nuw#oY;-^CVh=U<+x@oFna7o5iCywniAD$x>xbzb;Cy%5 z!$Qg%<8u5%IBWStBCJ~P1!{OqLW@*&!!`)w^F3+#u7}15O>;Qlc&mSA+=;u=f;p~- z#xeWQ7z~BmL#!#jb-?n_SdH0(YQaA=*= z>fj(b0136;{@a`;GJ|5Q^KC6gfgdzFeH7N681D9we)GCQ%;j~9-S+vFQIzd zzxUd|eV#Vu>sFZZtPbXH#ysh)|F&~Ei0&U1D@#4Ky?#H-=A3Kyw>+V0ZMnye& zjV)waCuRfuxIB@%q=quaHCt*mV;(kKe%zxO$IPLiwhh4@*FDe>?TLqe$A4v8&D#}; z71<@`L_{4p3RFjr)s?M9tF51v&!b1zlQ?`3LPUh;CXv=Q8lK{xq0jNZvibT%x?aA- ztVfu}$h>Sd?f0~*jNT|aKu1aSOlGr`gYnaDCO`BygglQR>O<}M$Dz~r_6XVhMfX|^ zz#hdC1Wh?^Dz=x>U9_pj!}v0k8YY4{oXruz2%CJuVOt=h4`lOwAXD$8umsVV1k7<%FAG?u zfH{EW^9ZE~{Nd_DPM>;iKdbrpAFe+1*{gMcK0<%Gz;f{DBdTuu)7{4`j$_6_?)|X3 zk7SIOZ$40Fq2hN)SOWHQMnjgDjV9z0BwCsPZuy3yB=Unoc~?`|=r74RPg{%{fw zR_hOIvH4s1fKaV7y)hN3{nrsF45^no^BvcN(w)D8(wQe59_89)6+e}BL3VD;2J>^f zWeyu!=7fX6u!N#yss($&V{}>|PgN^2^e4OmY~DSRcA9LpW)=L^tb)IqRq$7{3jS(V z!C%cP_^Vk3e>JP%uVxkeEja=!;qPDHnZJjJqAL`r8Nx{bSN_$2TiU-poqxY(%3r@v zSKna%?8sqJe*G2Hf3Lu;i}0N)u9h<=wbwbW__dgQ1Q5fHloU*YI3`>Jl`cnodPQ33!yMD$_2p1hQ3mRBtcYIxIsh38 zC#hm?u#Dy?reu!VbCj732?ScDn_DhZhVp$Z9ta89Ay!=BLnc9AgHcz$}Bst#P z@L83NlwEQQC~TJnNT}Z`1+ElKgz4b-EL0io18r4dWpqxUMz*6}cFDA-L={v<>{BGN zTRm}#iAAfB0mFi|=&o^svCmFVLN%Yr#Q)@Gt*R`^UQ~YNKz->>vyAkUboWR~Ly_4J z3s_Ral-3rWLHZ@oPX}8W8=+3KhUM)ng=`8JI)H^X2KCu zaB5VED+dQB%{mVL$>0}Pbx#J?p@#eg_(M1N-~opJ5is^1{;d|J-DsxqTG>EV^>&u+ z25c8TAIK%;W1(tNEzrhUJ|)~DD?dNw?vPy~!$Pt@VH_2x!&C6;wkiFcYMIthpb7Pi z1C@2%a2O3(QbJ~DyM__2L1kQYPq@LtF{n)9zZ_TP6}2$3xSAU01|F_tdPq#Ek;Gv~ zz6{2kMpkA6ICd5Ly2(x(xVbUwJLNjr95rL3lJe0wV`Ijtz`yNLv|a)3i*0@5Vvk{! z-gziETB5NsC9mhNH3DtrG0ehIkVC|Bq=@B65zCPxmLo+hM~YaE1OR%tZUJ<9SIR zQd~{y1~1L$`fy*(K*DF0vXH=^5<0yNY7<|BelzzCIQ~!chv{>@V6CY+Qd+< ztrKW1gBp0xcAzt>3d;3mb#-Dk3okn>*g(}u4`i0ZL~cZKIom|=gdOGb&kpt69gXTh zM;B(&(MR>%9j!d12bPeL`la=y7vVzW!3wJd9(WeLM^&>1DYcE=kk2K+OQ{8-yO5@d zaFK>74PZr$5Ngk*LW@vds7O7}u>96lu$%e}ECc+apyTQVnGV|l9 zt088YiwNLUjrixOns)cU8az$rK3D&Vm_NPDpL@)o+5C}}H7XCp1%shU`aInv zpFdJ+6dn#5>_tsCWh-r&;Vlq1yoHu6UNcQJYXKo)EgUP&TH=Pa#Fb$!al=~Tlk6@{d(-1;=QB%7b9NFY*utoaF_NpCdUo+(_TSrmcvDwb5!a=^fCP;fcA(lJj za{A@Ti;S+7pxqT|@J_Qp9@?wCG?BIJ$NBuM4r^T0%rX~T$}Vh-1qCVNt6X|^fN;O0 zlN18MGlKCb?K__>nhx%5R}MwyA_f+Dy~66b7LbH~WPb6KfX+Npttx4g-GQ>4ElE^M zw+kgvZRaTg;uy#Pg+R~IH0m=ClQD^2kn!4?c zP{HczEot%=O;Wq#hK|H4ycTHGf_)J-dnVx%rBoWXCRyB?WO4hnSFn{i7T|w*sW}T| zqL2*x4Qshk0sQln%4Y#quI9c@FF>CRK@y?)cmYWA{6-S8%9IJ@k(J3$T^Wh`BY$7g zWe-J7Vg9exXEND^%s<)n*UwR)SFheK=G&wJRa%5$zo?Uv2Um|zfLZwHg zAIWX2Q6Y_jB=d6njyS7Rp(nZL%ZR&@-EzetI=8Hk+Zx~!;&HJUMYN4AN17SkFIid0 z8pO5e!%=qh@A?v{&eU+s{2l|P{DBTiU1sT~admIZHqA^$!z%Cv++fy>1X`S~?-^5O zZ!bIJHggY{YcE`bhU~^4adv|)N_XSN4LD&cok`K{2~QDOAD9K2$?gP%;%;=}0Fi?Q zg(*9zBz>;D!%X%~8i?vl68&I%Yflg4fRMfus!tnF3HfBC5w9jUdy9zb)J0_czL3R{ zMNdJCpeP}Wu==(`Kt5HF#DwTh(lVvQ7~vill1r&Zn3NtMp(=IoptbLML73Z*k_$a0 z1bj+Kp*rhtks|C<`s8Np;|u-{X(B$QIS<-9dOB`fM|X_R?r$3sI7LHD_DMy5*KePr z(l1w6`9+?7o87G&M$}v05s8};T)AXwdH&z^NzA7%Cy9c$QwjTI?PKb@b3AKLf+X_Bh<;3 zTNTU(vJuB*;QDq|{d^=?1=adYd)*DeeqD1O=td#Vve z2&p3EiPOZ3V0Ajhf#%f5PH|r^zb4m4bm<>$?GHuhRCV}$N-{S{M&79F>sL3^WhiZY zJrG4Bc`Yx{sko$@4AnkHQIk8P2x_f`U?$l(t$`51 zqBoIX7xULDkx;bk307mCntXBKg7OIzAAJ*WS1gbrJd2ca?*Swg(GQBVXw*`-`eVus~9|OV|fCiF~_U_DYYqE3<6o&LkJDUFa(-zc3{} z9I*BeJ$9*?x!9ALB%pI~IYJWlI~1ETGX8Ha=SWvaeuB#aSBg&FS!~2Y1n47|S!7x9 zLiNdISb2qbj5=Lm2q%N{C?9KJImA+>EK1@I%H&+6r;MT&EJeF5#IZEv3O&f->e3mz zU#~Zg%ey2u|H38WzbfP*=kQ^605WXob>-<&juhpq+E-E}s#H$GJdZMDX43`0gx}NS zV2WOaTT|#3hrKk7s2xCLdOh^?P)Dxr73d2NQF3J1P6>qKF!l;G0bHn#^|ol3nopsg$F3GV$Z(IyO`p6SD43)gC#aDB5OVWasH*2YTM zqy=H8*r^a|k5pN5-jI7;$UcL;UklXBMV}9}#_|vjh(aoGpD=#)k5D?*P+@;ayz*{%!&K2Ck4$f-M8h zOwQ(5Wo_1{mpjd4H^30v58#r3?hIoLBbUmn6ROS#55S} zO{k&jPfzNyTlC;Mk{hhFqI2~HV3mElC_1-OrL;_L)k->1HuhGQ*8$7nSHE|nV&k#i zCc*|(v+k5hj+}DD2|2AaKadK$v+ocR}{yla8+HegIGDKf5z9(5#JFV5+o?K1H1mvP4 zWx+LX*nTBQy?t-8tD+-B2d7^KG*aT80at74!OLW+9Wdi=lgiVsFiTW?9BnRT1kD9T z$_R7DxcbU^CD2gbTU~uWKDyEdbl2l3-QCff`nB#0s6H8GC6R1vXN}x z+LfSoWiL>hIxg9Y?p7Y7yUthBsO>m!qXlPjZBwrgjaEF6Y$V-Py_ca{UQ4TrlT%A1 za!5_-1CQM@T6iofCFeQm{7u+*O9^WQCae{h;2_ocEjY&-R|It#6^0+ip5!9mDAoKh zhln4>MCFIE-&&prt|!L@x(SZ>=OqxK(N_IO-~Is|`5H1O%xy{iCj*g8H)hg{)~Uk? z!-Jy&Z5p^*aLT(>_I zXs>$ig?BnJ1(IEA^TUC5lNS=Cil!h88E%B^?DKG-z3X8p^g4T`=#pU^_Lq%M_M>@l z{eEoDRgVM;$`($}3QG4n{%ERzzZoAWOzlV%b*7S%u8968oz51@H2VH=(-oYzp{i8O{lF!ULd3A&K$Se#Q(radcrY8a zO|Bhey`m~IfiX#IBn;oiFg$UcIimWL9@{5qJMo$deikNR4yhw+wtGxk&7D-*N-&1+%FCQt zPs1KuO){(vucNIow|j04cj+kEV9L>8`G)jA6vpqe1>;60AnN2DH;H;1OEL@p3H=$c)UDt-uu8 zH^V)^io1{v{4{=8@YY&UiKH8y{1T}yxrZQ9zuUB}5?vLt5PHPh}v zhMQdqE5hysBatXTF?LtIprK-kFs?+R2)s~r2A+}9l{H2>-NisZ%`TOEE@LF01OS!} zv07W6K=O?n8sM=?O!b`|XrG=m6{x8_rGi;hb$H3(AW^pHIoj^%a5szF>E%+pL+O~8 zrFS#h>={03tj>4sKz!TCW6{f2;AG7zEX_c z0|u?<$TC}#h*l!$c$TZqdR6ykC=~CTSQstu1-Z9qke-5^WIdKGU`bw(R>|J5J#ytc zUo+-%kHP~LvK-6&wc!y#@;936L5=;?KL1zm6@6k}Am7!QHcZYcp@3LF9UX~~cWIWY z{|S6uKP<#0`OJx6HML0o=PVn!6J8_8EI&^xLvd}+Wbww{Wgq4XF@4P~s;;ASgbuIn zRp#rZ4Ku7B>z1y{#O6deUymhgg17c=@GM_doL}03lDHg}3gzHI7gPdq)c$d(9QfBe z!y6ntwI$PH9CLnb0eZFpD~Z2R-JSwE@t>G`hu)!~GcoPs81x`zufDFQpK&o$$zeBNSLWo^S;{0QK-Z@IwQeEIkhX7$26F>tliaPR%r z6T!|la}1%Bma!9|W=<<%na&T(*a?ktAaOPHWU!9XTps5oR=)ZDbHrf{|fjfH;x1h!`M=@*xE1G!p5^UgxiJH_E~?&nC+Dx z%*ruMOvn%UU5Oli8ABhfp*Nyp-}B!7AQ#9 zw52hF&a`P!jaWdp-%Q{#J9Wc*0sQ6Cg|Js1tgDybll^!%5VYUov;A0~KchNyY9rHu zINR%lRz*=I7p!29NXqY<}5jB`y=v{sqK zah5K!pp0;+Q4Wpq_La7C-GMM|l{<;qmwn&t;=&5Bf#)U#s=~G8g1|(CE_`2hkqFJj z%k32Fn`F?=QaRLV1NK#o57>}1C(?1p4>|ILG|j?Z8Gxqv+In)D-MWr@B11^i5 z>e9>D?tpjCp!(~dxq49|0Lr0|p7|LjcxflX`c=ksI{9U*tu37#szfK_r_)KNHO?84 zHd2~#`UB7h?q35Qh zz;{yk>Kb=nS`74>4PIxiwQxacb|&a<67cg5Sa&1-D}rosl&@o*oe9kThLr#~!3|t- zIbC%92VK-!?;deMlU%^seJ>I4{SH`nv!fB+L|+bMPTA=0WygGmB-7SL z*VMP?&_%0P=;DOC?v$hS@Y*XNa@&{gE<_-yrgNzNs{@zi?pc#wUJ~%AP44Ov3{N;Q zAL88Pp60gI^fK#Jst^6jU0ottRsFdT(s{fM*5a;&dr=oFatykB$Dl*Uw4%+veaa_R z+d^#I91!Q=I`&=Zr`$QiPGyI^I`$o**c4@6l1qDs(GrC{<&WS>_0YM9oFCc~Zd-j*vxbQ4wlcQ(ZRC-7eXAvFi9Q{vp@hlVux4#sY ztOFdpHlr2%YzL#r=bt$}I_P-CqoB5Fi{1zMw!M76N{mME;TE9l7P$#>*`BI9-#rvu z6Y7F*;6IX%fn{{usxhwh*UQJzMcb&w2ZGHy@z#pSWk*BQ37TuDDf2iW{l5<6Wtuz; zR-O^y+-Nb2obs6oG&LfPTB@zzA@5~4tpingogV6b&kcCx=4n|PuAQ>ufloOG7p%HH zP}SKO!GXXN6KcxCPBnEWcuEa5DIBa{HX`psr4QpVjd8azXlX%R%) z*K#j8A=A!$%-XAouTk&&&Csilj_h@V4yCqqq!I*HmHS-M9Xe z-Y)-<{Sd0iB&0e?6|~S#dVXKPK0JCfkWa?P)KdA{5TDYHsJC~>Zr}?^SudTYAzR%o z?QcKK82xwgiyQ-d<8pW~L)|-p1T}#rz`p(=iGhov!9X19YOvHf0WqOFqZY_>ozANO zE#1Z0;J$8Fu)fM295kWuS-b>sM<76-qk32)nup!`uv%hKq;{*NVvF$sF8WD#rQ_|^ z-w$#UA+K7z#q#i>av3FA)O}!(ud8tlP)?q!bEM?2Q%pA749xOfOK92b=VZ$j4+S$P z|H*_uS_OUBdc zdy|cHiNu|&&C3|+xxJo75=u^^uu9+OX(Ykms{JR7G-aQs(Y9e^G~@Y9Tm|=gTJ;@H zw&~233^j4TrxkJ8IV%1EmU#LBPmu&>le&}48V5Z6eK!Tvhl@fVJm_hpW3gjck+&c8 zG%~T+ac)hIdW$3$yBcqN+@WR?dM(z9d*d?Hx>3yJ*hh?f@{nibt~XJ%bsGXa{u4*9 z$I(EgN=ZsmUH=OHQ$O)j3l`J-gQoUPcYmpBvJ@RvjUxQ~&zC zwB9#QIrWO>I&BA({u*EUYv9vPy)7$(HC5iN&}{t+1Z97s=m#!_Xx1X=gk+vMO5$5(?u&MrZ?$t+Gly3p5 z_kTpUZvI1{QZ{b}tiHnI0f!e$M3}n#P1fjEIr73XYNQ-^tE_O$^`~ewLZst{%!xR; z>sX+dT0a$RNxxmKLVg^J^|w-(yn|6!Zlmv&K@t_b{#&52n)w+xwfmj;J+ePmB_C^n zdgb>(|EeTrb-Tk5VV@(y9+#vBx_|vXCXOJ#EGyVfJ#n1dBMs+u3>i?-Z~hDrvV1(y z%z*Vvl{oh|l}{iTCLZU*A5vZ3semPSH;qra;qn~~5-8&RnB%UGh{GGX=6IkLcgev@ zjosYVxeIVU)h==RdQsJ^KiN3VCa+x0+#mac4Y)L$H!KUD3GyAJ@@bi%Kv?3#CqY^I zbp@rc9P%w06RmC}9^_@xl~a9|s0GO7)kekGKUkEsRnoJ0Ng1ud>UmC{0(M%8$#-+>?!c?KgB ztLa`aM>XbQ!Q}FxCMHwBIOaLIPq08I3NUz2zE-GR(-bc~GI_h?CJfavi)=~$RpV`b zO$k}JxGdzcaCnd#t;xtA%ZAV?K1nSw4?-k5`n+-}E#xH#`$O!~%G3gR2%@vTwlAO3 zz`Xp3a|!iMYJqL(wBhpXm+6u5rtK}OigYw!ihx>ZVU%H#_|*GjfL!dnnOjf27VI0lW}l=atK zj%7?&kIaSd=wE}L7Oo_vn#=8(%rDL5^e@fjbiFl~>yySE$ee&3IF-yv$d;p4f6W2e z`CEX`q`MRu$NN#>7+O44vHZ%p2`jLfyE!jed+6xdHFWf4R`Bd{gyxp5#tF)MDp*@x zJq<#5=~K$itQge(d|ZlZ(=?E_3=082Jp_VA+cNQ8Rv9r@GSC8%h`FI)J4n%mq=bO& zWGz;0;k?wTOz&KOh~Be#n$>$~$qh)TN>FY_^s4HC4JYHi;?c^%b{Qr%%Z_LRv&L;j ztj&;nhW@Lu40!S38rKGK$ukXezYyp8<+rL#0rgzoDoD_jnWFGUmHs`)_It_LBIVi! zF{Q#HRqGwB&7B#+e78rDuC+?ndpmec$O)QQFWpKQD9MR{KUu}%$7kkK@Uv!afsL_Y zhvbSz-FA$T`cw;cQ(sMkqR8+qoS1NwHPwQ>4NPACm5-x>TwFcaPaQf+gSV?Y4gOfm zWcGc}Vn?$bm{zK8_`TyhXkMKHF{GPa99neYt38d z?qawLYC#gbunIevyn702Y5Efr=vosLXVwT-BAnQ$yO!)q^HfcJU3-|hC)Cy&%v}hq zihBdq?`1>H)z7ujb6f6Wo8`JIPd^mo<&nLC($=93DufQL{mp9^b4Xbl9daG#4X>&Q zji;U)U6{#BpcJ-#sFozb^IYB**mz4BS`6`8a=7sO$GJkix~^Un?H?EWUYp^>q^mpY zFfZ-EFEn9X`f#b@da$s%KeJmE>gt_|)(tjd5uwi$^;kqXpm^L(D7nhnL&b6p*r(?o z5;GJyR&>L1{Jp)ttlP$5#j3oPNFGdir*O@tVC@VCNRCixrZbf?OkCYvkA`A-*5cuW zyP-9Vx!w@-t{Rn7L>}<551<sB56JRCDes9cWetBPUofWMgY`{|Kv@R9* zv67=3vE&>s4udSAzUg>qA6Sk&O&1uaxs>c;kwI}+qtZn-PZA7=EaVQwU~gHm3;Qgv zPx0D>oqWTx09$oHPmG(mQLy*Aq;p|LJzvOx}&Swy03`-4v{o;amv0 zMpa|>GrwcGEVgzkq;9Q!VuBxu@Ue0sILq(c*rToWIE#U*o*v9>V(tR%^c=mMS26Z1 z+3)$lnIzs$O%(zT)sfLWnz|)+SX6vEp1>c55dZCs&kXTNyKhxZHthpljq*o!2aLz|?-#_Wg^>QaI$FxRG= zB}1s`IBFl^#q5AFJ3!0|d7DunH*W8v;?~m#&(w$|>}^iMz9uB@&n_Riip&(TFZGW+ zj->xY&*fn^whrtWE>9BdNVuswzKIM;vWOYRRV~R@av@jx)J-^)J`1W9p0vnrJ zU{7s@D8QX)yJDI(6;~+=M;9yUmV`moFiwQ?Lc68$cJ{~Z9 zM{s_YJ+$_PYypuj4R!{vyjC9s_Xx59dW6z*Z9TM(j#FsgU-E!c&%V&U!{i;I{kPc@ zo>=OCt57`c5_L&Dt$z!B{M>^HQf4rRd03`Uh!^-|JgwgUZ@)YLkcky^FNUm+Sqw|P zg_c^w*161IRdjXQ(}Q!vHr)JgzFw`@oEH@Kui5sn4R;Iw55AFH&_eI08&f%)8q-o9 zZ!?L6v8X5P;$|eGmhD36d~ie>@kwEO>lL=_C2ZJ>yT?+V=SYh%CgRyY1wTPv&3-g( zATgzP?j~yAumR$7_4FcEFh=Zj{}-RZQ=4`N8wT{M^i{>pgVnRIE)_^tenhx$gWDfX${rM8p8Q)(uv-1B{6ZQsU=No=P42i9l^4Gm!vO0RfN_7aU zYeczm%GifS|KVCP_np5lnCXbPs1^~y)hOkdr7EJ8$T2IC zV^$)^u)=m9PrIPRPTqzxkuzAY`+w|j$^Y4a?zxxp;8L~Niq4o-gOiDOjV=}A1#(a? zEYVn74+Oha`}<_Au@ZCcVpjS4kN++C?+xr;lu|L`*a$Hj3eSz5*=eht{;%>zw$h9A z-%A{MTZuU(aeEB^8bLy_EF)p! zRszKd#9Q7j(DwhPR5?~C{qLvBF|saU&4+*U*S)Nzg1FRzFHQLZZHiDzl;(Uf>xD~9 z(`BMG*@;>HgngiyOnPGLTX~SM^qjDkTEgnZID1Tg))Grtew{!?RGCMEfxbpiCmdIU z)jJaAuX{43mRhMBqBIkP;jg8cAgpCBpSqcGG}ysfYTg(Amcb;fnavA-gQ;a`iNF8r z#z;7nrfA0@k|=%0ZkSi{9lKpctCl3h%2pTM8c45gsQ2GJl(p=D*e;{-@x#m&*Na&= zei*XghgoWV7&Vd~ruTpU!#$f)O^E7dDf08gML6-vK%GivK17|z)QsbJ9#bRm0U zXo`13d1}}R_T(6^Vk$Wk;PJ^a0bcM1_u0MP2o$uzOKvsL|Jmb-5=&=f3pD8dhkw{b z@{a0WEm;w>S`z0n^<=PlC3^z!{Hd9r1ZtG93XX#>-|`wDPAzM71F`Fv?~rsdRNQ%! z$fGa24*!kF)h_=>p{surx%yFwvm1`bF8@FKqsT78e>tjqqhxjMMsW=}>bpRldiH>p zIwHx@YI>Grt>5hoH0+&=2idY5`@`L(oDS2a-_xkgPN&f6)?ujyM769r99S~tRB)o| za4Hy86HjqvC^>Ydp9-E?%dW5E7fg*mX>94FzzI=y{cvWa<1m_=s43<^RQkQ?!J*E+ zk;u@_^MC(`Yu?(Dwo`L_z4#(+m&r?PXAsAaTTt2Y;1&>8_6e7fJnq?BHdN;Zi?-u! z%f_w{Iw){WZ=bwdA*|!gtkBsdFs6d0eJi!< zRy=IL&AC@M89w6r0eR-X{H8QDXu7~$^#C>)yTM@r8|2;Kh=9#J+~BBynUbixZg@=K zW_oUL9Iz!O7dVNw4(WQSUGmPuJf($y*D9M-r@LOE>Xs9#(N|XA-u$^sWnR{~?FI{m));Yv z1w$)l++g0bGDJWy;vx4~eyby36cBpgUTZ!8t0KEvu;F0_tY*~+1@scxdu4ZRLV9Y1T6EHVc}b8^BI(OZf?VGV*oQuW5BW8r zHPCgQAh<>%p<_QOWlNoR7Oqm>raWFVG>ZU?mbF+;7J|!9Rm|_R-BS^k$7?4k^|Aua zgnFb_sD+Svffb~#0l0cxM{gyNx{c>|aWse@uob%QMuLYm65U{#p*0!ZV8P1@Y&V#- zC0n|d<4vlRa&CEdH?lSh!WwfqYl@Sls8BN~4GX?DTcxYdm`2RE1Hv-6*i{>7ss5@R zYFbO0o7;W&bfMG^byy5t-Fx7Pc#}pxj7SCm*heFLlo7CxMiPRdPe$-)2(Tj~l8XVo zsO@z^*>xZdsbHjHa>Am>X4K^<>*n6AFUS*&tv=#vM7%a&??ejn^$^~PaFMRYGK3~y z`#j6t7iXDLt^hx-8*0&4diJqwzBi;F`JhLIEG^DBvr8 zH1h5|Bm&sS{<-WIuvhj%A_Dd;GO2z5yU$xt4xA*(KMY1eQsPriBGP)0*Xi{`S;0cx ze@txy;>T4JuT_IwODV$I366DxWoA}4a)V_Et0uX?5y3S@kf`C?Kl)^pY|wB3=5HJgWLP5ONW;ePV=YiwTrAh)I_|u_5{50f$w0 z>Rjc+QXgX*9O0UBOjg3$CoV8q-vRruCVDroVJN3|T=28bGj}Uu>>6^Qq_Izkka}If zZc5OEpbxcAh)BM5YWt>vA7ukWXohSprX&J|BtAPusbsV;7C|nGg*by}=*Wl~Km$+IXj@D8d;Ls9vq9*X$r#lkh zMya*5U2R1sJ0U4T|UsfV?}!B_zkA*n6l7 z`J4b?FL@RUS&C68_gn7HWDKA3O{Q7_`}SSP)G->TN=Fl0T>`fjlnv{v3V4vW-rEXZU(VNHePLg?9;jq&0dChO273J80CrE%yyy@@E%xo7^( zktRll0enhySR{jEK)S{)kTtWmq#GPl{pr0#*2snfxJre4JGP}8EJOJCXIOZ-wK!et zALf-VV6OxV3!jH-%x)#cc9wSKtK%Y#FppZ+3rfP&3w=D6s2~CRCL&C}(8puLVk(kb z**mr{{X!qhC2gjF4H3Ih!pI-h1c6_*X(&+LHxW+XOiD}i>GLsJa$8ELK7tmZ0QGw@ zi=&`8kz6hs(MQ+Egu`*T2RVXuCvJpMA3HY1s)b#U8re4nJdgvWW>ck>kCGB#z`0WE zC_USUc0zaQLmM~Sj;3gb5wZL@cb*|5$db&nQI-W?8~K-BV?@+;{-N$`7OGalt2-Kamyq}}0sByu^X>%VxzbNH3`q+nj&-e3*~DJJuu6#EuktV9wd`&tPOyz9HS1uB7;q$9#QV1&L# zvadd|C~5j8wh&n>2>Rrp`_@tTN!Vv!5HToV-?EB>DQrEhW=L&zMB;pF z5q!lQ4f{kVx#?8PRva=tl#i|xvJ^hkgCul-eWEj>*^bZjklb{$TcJio#62ZhkBb>l z{i_wHOy=##!%}rCN>+HlUJ{6E2IP~DQ4%9l+lzWMU$)+7ZbUUha)f141V?#JG%}B6 z;z3Ss*e4#NJnET|$1+K$Rvad`H7W)xc_}@_Nf4!gee=*P$|oG7d?IXKECuX6fzhx`!zUXh*%)9m4Hp-X{9@Zdsexup zKKB+0!lW6`qVhx8y%9Oy)e#OA@fjge;ZR5-Uu{S(;xj^`yu}?`z_y8=60!Gnu8n~c z&8Jv%qKJ(=aTn`OeWWA2CW2Zzf~M#A%#f()C8RR;VkmkE^3Deis~&}-c*s~jcUx49 z1yUUQTCsSDM=w~^6tW)sz-(N^-X^-HCyEEjkacbM#_^!_aA7FBBr48lC-BH&~Xz`03P}g`uowJ{cS3TUu1{?n(^b)`~EDDMm)b zCsbo%WJG*Im6%uo7pO5bJ;&$5BUDz3y(b|iE-xpRJc&HK8W}vt>l`inlPfsdB5O75S5`lrJ|Qd z97$R#ykp`_a2`9j8_8sSay2HJ1Q~t3D~ignFoC5K)4aeZS>y16ZGxa4%S#)?x~lZn zxDwlGLO18R;3U9yh|*oTMsA5eOHwe^se zW|Jz2d{nwo8|Xqj5K*6CjN?A;PBHH~rP#Y<#OVsy%gOj!vVeUP5fcQ3%8Qz~nxj5B zNhGX*%|u+39LF(nsEzTYpl^9Q69G@YUmsY;@X5)zm>^O6zAQ;MB-;?MZ(1VnqmI~g ztsw$`Qd`zgOpmBfP)ah5Nul#p>+V4&Rdx?-=xsrstiGoZ_fYD)Jdj z0sHXgp?v>#Y@(cE((8IVlT%D)ULRPG;Ugq51fn*~)wN`D)}4nrZm_JR6_D;tB;`Tb z_AHr*_oz=o#z{@xisGQ0)F|H7iS5~NAL4ROqdvQm#0vuUBA(#0Z-Bk)PdG7PpMWHC zSitW6P}|#c6)On&uDB$N!e5{$end1^mEQpeiI@BnBKFZ=J?oqxO2ZzG$rCrf$qCPV*p}8doy#teM<`af|piWx(4iOI; zR-PNGUXqs(gUP;Zb9uoN;@5Rv{JU_|Y}V%{O^8_)^O=bWVY}%5-kFHC71L(oRqmUQ zgs|h7PdXA}FJRvm375ul@O937xG&l!dyWO+D`s9XD-K=r66cQd_Rb9!OnuUkzFjw1D}9*ac9ZXqGXr0Hs)?;MoztvQb_E3Ro~p5uhwDVA&|I z00k@vTZ1#HCjcjB%Y`hONEzoLqHFpj(C9$1S`WSAtM)EKp-jYUZ}OT$CgQa>0Sm@n zdlRsr=Dok<3o(L`4SLlWg_s``#Ngb1A&$p95fw2!y2Y~TUeQfG-ECAoLGd|WQqVh#bZ+U@E4%sTk09%n-GF5fJ~NOfyY96-|s=Z^%$Px zou4NhHs%%OfaUOb??VCWp&M#RQGy$sV+q3mF<89L$7QHEJTJ~x`BB$ z^U8LL<@9@HJ0FV3Q-?2xb>(TE>h<|jF4W|e?tnFFu9+A*&^*;^sZv|U_6mC*v&bqL zOSO7ZngN$F2?v=4m1ldUJ;gD#qH`$w`aI3hyz-r|zUXef=K`9RUOgHzwPhyWD^b9* zn!L6tx+s(*pFtnNUv+&Kd@kaW!uIwYJ7OW#6J4MvaWY|S`-)`=y!I@QbOcwgJquWm z;lovP9j`p6HbasXRuAdoBa+T8uPfYD%v@5#dQlP&RNO1TB|o=-J%SD}>m>I6La3#A z+-uNMu95JqIsqUXz@fJ2sd4W`C~t4bp-*vrQAkNw>P1o53E>(gokKaj$%E=E=1|7H zGMSy=P~vs)))wv(_eyALht;fZoB#rwrQEmZ!d>uEczYA>68Bz~%8MTX`z9j(thiSs zQ(J~KCT)i61dzO56?GS!gujql)jPN_lDJO_6Ob%m-yR6Va2_8g5j@Jl}DQ+~w?kFP~H| zCu5asCZaasfAOM5CijKlP)7%G#(iR$h+ws?2S-*kpt#rZOM-DZHs0G)z=E1Lb`!81 z8?T`YSTObpX~IJV>@_y19#vy{!f8f!L$>?GGI`W#<`c_0oHXth%bFYWa7t=>PfdZi z+~Zzr8%`wia*J#u+lf9^jV|E?i!z3j$g{{2h1#9s5>d)X%<3x^w%|3l8B8YP6WK&G z3)su4beJkhT)lmZZst7tcJV#Q9ChdtPLB>U2x-6xvJVm0Yf!AbmqU?G#EHrkuy0~w-^P6+ zop*Es*0h(hs)QGmyzN@v2hWJ24#? zYx5MiNtFOrs{8Z8UN1K<+3S0ji6A>RwoyPYY<_t37^$o zC|W3YlK(RC9(v!2jn zz&`zf&|?8>29dI=l9^rOB&K%4r!w${RlvTfh{jCj4IfT2G4K7dJaQGVZ(<@&aK1_> zDXS{-1m~-_bCD+rpF+W7S2gi!SyhoB37-nV<5mHC#V+B;0`^Tz#0kz=@7N+voYW#N z$`)~gXI5&btSS*|`F#W@ks$bJz1@ifN%&L<9e|FH)>m6b@tOTZ^9tBEF_9;@Xr+^s zRTY8aq(N~_K?@Y0LP4DFl)j;C)#@?{vGaKW3bh3BDG)^9GKNoqAOWL*z4IaXh0hww>f0xs29Qvo^^@341!xVv6xDnOdz5B65TYqx_66~n?=@NDI) zv9NDd{aV>TVJpCVc=3Fz=vqNsG*l}177v?!l&PTc@(I^4(JHe|1&x&&h2c=4Q1yUotHSF9abYLGym%41sETP+R|lj~!Mk3BBdST#D}jf) z2U6EduOCRS#19J0XEaB!YY*#Q^($uQJM_uZNA#a+biE8Kni@U$@FJN=PhCOOEh_l% z;$`GmQ$ge96J`-SbPII_QI2pjd)F&MD9R2~L9drjfJMl4lQlq)6bBnU_>hDH73m71 zrBK0#B!S?gs8Es6HC+Lx;WaGYKL*I+i5`J3)Q1-e!v@`}Xa-d95*u-3s_YGdmxy;N z`0yfrBwtq$j~Nwwc;TWiHWkbe-a{bYVV^{Wkd9c#$*fxT3)NH~-4M#EOR$%8>JlG@ zOGh}ohiOxha4%gUqWbkCjG*yAX(UpgMm|h%4f$Ve-VTmr!v zNi7%{s=+`S6X<@qwE0mFWKOM549I8Nvj)jP<_P2HJ}8aOA0*hBQ|t5oMeD8%>I z!35K%L4Vr3Fep@wHZnLz-NQd5R%-)o>hd{sUBS0IJV+}$SXVHe`ql*BSw0oif&QTY zUldHJO!$$yelRcAx)p~4+2oz_3`&sT#KB;8FU2|di@n8!gshYvUpM7ml!!r6hoyY0 zDfeO|A0%%ygz}7Qb^l&+A#zCdl=Akv+{f4D6Wn7duSisotO?co!OGO4AuJ?8J{smj z3eLNOMj@icbprjbU4 zKDtYzr*$JSH%fD8xf=1!r$pCKK?8L z=RGN}NNA6A3CGzccswvnkQeVeFyDS4-WN)z-L4M>c;`6mdeHcR7V32X9$pJOK?iphES8fJO^wtpTy#0(t>ZMIumSbiNDK5MH7-8kokC=P=y` zR$+wH6EAjtK2E9%2r*))_a; zu4qXp{_^<(yG+Bx$i*8@LIQz3U|_Id&oqXjg>fLK-my&#~!GzdP_kRz-%0;#f#b`Y zp}%oBiVAAN2w4N4!pKdVnl0taOt}w5xsR3d1E$=|KuO7~%HB?SgOR#_AA)F$`IOg{ zPYAMCKBtC6Di@my`c(N;NBKP9BwazSA8@++P((1SG!^vL`&38y{NG_+!JHnS>c~}* zYIH{^yB@cY`rP~)_0o$W8HoS zYdL*XD463*gh4ZO_d7M3auv%(gO4I%^+nXEC||vk8VPk^6vzFRJ402OoYoS3SucP? z1Gbgkq=f2r6Rp0amGq>?A~B)B((ckd$!#pX`^M)}a`|^*4D7#&8Tj&8ka!1sT*~X; ztjm2{$qnozDer2^ebfePSSjWAm~t<*$>-z_Q(loz*vR~GTg`K&-`Qz7D>uzQr9?f9Ou1VqqFj0q(sq(1x^Uq2<0$E2nCZd0VDd?@*`^1%5TFO& zk`d3gL3)^Odhp?hd?%~#;jfM`w_v#hZ{vtlC zqgm0XX_l#T{eg?&{C!o&M6gz7=fT&L_Ya*^Pob|`Ij2JXDLX3!)Qp*-^m1^i*Jg%l zpB1gtsz>on1BQ>j?4|(&=)yQGE48}lJO`k!nbfib-<+&Gi_{}TSl6EwDv~dd^`8~G zPF>JCn4aEc!0>^i2a&@NUrKb+js_)!Y{%QT&%Jr{O#_ODRl5DT{dW$&J^QQ4yA!tz z{kiLRU%s|y`1mOszdXD5eHWh7`SefAHGgx`(l2|jxbU18DvublDEG!1X%Ac(`epOx z+$vQ*Uii};b?c6(&}PYb3z`>ht<~z>E}^Xju+mXl*~Es-cMWaTKo1-&)v0l&dEq_na#yzLZkb9dqtmPADnz|TG>Mx zWp?lGGkN#-Hw2E9oqAWaOwN1neOK}1 zrTcy=Q*wLRGF=Y#{jy|#*3J_Z$BZm2^UObQ>N;@eZ(lULtL%~vWww`}TkWf3`CYFn zU#4HVG4Hls_-dP>m;P9$%r}+C)IG6j-rkv4m2FpMYSAYrH{JSM-;*DeaWGS$gn$zHYv;Oyw#M_o$-E<&G`N9n*0|lj`lVx4o5JA#Yg2Z6%fam;1BM zpMm1#V@D17eO%d{(|{Dc)Rm>JNpzE^aksZd&c@6Vra%TkYE$ zx2*kez>1QWuDh{Wtjmk#R(0M!Zrrzdw->jIt*+l@=CG2*IcF?M>woRW&8NP8tL27R ztjaUj-PYx~jU%QW@3U?0w#=;~Ca=A%$wj?ZJepUoPTLB%t$1`~m21X+KQeUS<4fZG zAG>7y`uZ0?*lp07_seg*qGRCL!C|!@nN?+1$MilGdR|rL(OKzRcAQ*L?!@-ixA$H< zV`|>9J{4Y^)9cOkRUV!7<YmNVSI8pVf zZw9O${M#otZTT~?d)1sz?x4s={zzW#)5i8JdxFtF;D{0jSr_OITy;>@zm z%4OU>@q?^CKAHW|u(Y(Ur@w#R(5G&=X7u<6uU^!@?mZ7(J!QxrHPW}JYpOLo=iAxC zw=S!{YhY~ffMKJ$uDxQ~qSqHMIrE0hJNhqMI=pYu${+WhI9Ykn&#jtV_15sdZ?x<6 z*zk{kEK`!Z;*wX--&Cc{dn22C*=cIVZ7*%9vbnhPt6lpyT7A)*UpKuuzG}?3mrZ-< z+vPKNJ~}&dX>nvxQMoHVXx-$#=@aW4-r3)*_%f~H?uRO@T3>N!m1frrUA<@Ay%TqQl6!9Lr#m)%`kY3q zdSnjmpWghT$?MY#Hojlys>=6#+@`qyizlZat-pHHv^$4v-!;G8x^C@vpWo`gT23x}u-;1Yye75S1f3<$BZJEmTwPk&$}zV z-VHx}uw%prAG93%!TWFAeBHi5Z>$;cLGj|?(#J}UHH}|5w7BNxWuM=>`Jv*bZ31_F zI(T>SC$k=UujZXoyLT-9YOH#yf2+cp2co<7N4MNH?t?1q9V>sn zc=(E$jS}ZS)Naj?{Am?tTvze_9!-XB&f0Kck6Sxczxce1K76Foj~8|t(YI&udE;*# zbkjMTp08hL+RGna8@TYIK{q`#@5jdBM1I=0v&U6`W7Cm0pV{%l>O)^Y)8w-w{Tno% zy=u$C*5@}^`C^MvCFgHi{8iIe=S>f9sr*=U+Q89Y?8%N)ZF2V0>903=>!$M_z2>_% zwSIo3+1Vd9n)~7vbM`OJ&Ut_0N4@86?EPq^qG_{#P2cg@kZ_&VkF9#HQJ~Aw)3CC{Crf#sZOl|-lzU_M};z?u%T!y0>Wa&1 ztq=6x`RTGMpWhwK?bB!0kS@XccZ|B}!|%FX5IFOKwJi_!D0lw2uEP!&J)RyN-E>k; z@7u3Fr|wlReLB9`oNKdt{&VKBw5N;IrLUiT#p7?k(doXD^uEomfBf@*-M)0lo^p?` z`A6r#`Tw}C!}NLGP6Q&+bw58jH~Z~Zr|ulzWYUC<+rE6S_Lda|Z@<#x(VR2Vi%0dT z{MDyfEuOn@aPxx8E~(e^wDB3~ZLZi@`?HOYOm5%xl3g>uY&oFW8_%~G-u$8#|9YW! zdh6Dg&Rw+g;Zd*uu&VzBeViVA09sW+3BYZDcts3?T=^IS^P$P>&BPDZ#I9t z-^6RrNOat=aOJA6);Af|uiE1ur$sJZf5s=Z8}^Jun+)mGW5SRddpy&j`*rs}TQxlR zoE{sGpYe2^1Ap9cQ@wlg5+zqp`+ZsT(g~x#dU4l=zwWp&F{Im@3op8{?f(CVt9K5r zBzm{MV`E}ZII(S86Wg{YPCA)rV%z4#HYT=h+tx4Nd+%Fy?_2wy)2GhvK6~%#?&^L% zYb~oKMZ8g{9 zS9zT4co@;d`w5H)sl_f0PwgA%h8P%D-z>De8%2Uj#o)b_gUaXe-s{$v7K8D~L-vK@ zXMj0&$ygeyz#OI?D8v%j5C(@A1bso|dQ>^eT1ts{Xio=9{GyN+Hzct1#y%j>tiUSg;NWUA&uQ_2YKm85}e6wp1o@LgzZ6DyvBa*jS+4WHgg``W#(V@&49%t9AUQ+lrGWybPU3caCU%@vrJ4AQt|zk1CdK)4`!}<`2=a%|v){lR z{Y;Ej_m68o604i~>}RO{cok(UA;s;SCq)#Ze^-pNLpG3L7uBgCgCw*HC}Hp!^c7{) zbW#k+&Bh1;A<_7t1g-!>y3n2CDK0TJ=JQ-b`xUohHX;9vrzZEcZ#VV9G!00+WXlBku2d`4x zEi01Is8E>lb<~oP91PF$3}W+=dK2;_V>V@eo}a_}L2p(Fi5_cl1O!J&K((qdX!}Kt zs_9~dhWF-;+#>LXEFhrU_3D_3!|%tz+j$#OGtn?l_eiUMGa8Tyo#k~^4~f0Rdrf>{ zUIjtpZXmAVwBr7qsLwiCOQp?%oUV+EzzU9NSU8boFR!;WL)TDYKXHxs@T_ipe7q+3 z0J28omOw7Der2h;`iIsgupoWWWv%GrqfOHxheE+mRvwXg*dw+rNHhv9%)K;Qw}kUt zu}A|ZizOx#PhC6ftTlIh_(w!lye2%%KnYa^Q-i-PuNIdgNHI1p$Y9Wh>=0XIGq2K` z#D}JGsm|bfTA=gIF}L-kHZ8u*cpU!ZH2r${>SPs5Zv#)ey`JPJ@Y)kDV5bF`dWlHL z#QHu}h8y48(hX}fRmOT@LO2MTa)un*5PieMQDa=j|E=u8I9}G*1A1EP2w^46My#&t z*n_TCsv85M$Y>zW41eq4Up?Lw-Bsfpp%`O|-r-W7zqXU^!?IDTKg{>4N-!J5W5&z0 z8@zg-4zk@Es`$VOxS=x>G0>ufEN_#~GSB8}%9-1G*IA|KkxJLpLpb9UAHgN6s?ccn#LoEps%No}-%x{=l*4XF_Y#lX}fgdxFy zeme-mI?OI2dY} z`8R2Nn-ZO|X>ZZo_b|b()HH?BN>g>oG$(>Q)Pyd)KqC7bURt6txp)#H2i^#ZQt^D{ z^u0tGvI`yn3=RadW}=Kfa3UI_8VxEs=xDXxTZGm)^!R!m)qZsy-{m<{90hXN?T`2Z zYN?=^65h1D?w4l6t!~0bv@OA{SP)A!;(i}#i^3lX*M6^8=3}aBS2&k7ds@E890;f? zA@B6%>sjRfsZ5Uelj*a62FIJn0-N9<&f4Lvgy(L6c2#ptnU5di$Qa41rJUf{y?)A$ z6RxV%l4WKTbaBUJqyu)E2QiV^rwHmd$fn)@z-UoKd6%4E>O4gx*zlw5L9a; z3Zx*JZp%VzP?2sWRoK*7HNdsYNZP9fIsfK1M-CQ~v=PkZ9ij~$p&l_m#2{)@1+)dO ze`aq3q({Ps?jJ?56c@fnip&qw`h%Oh!JCVG;M%^;hBHuf!HBK7^cBr(6_kYm{YDL8 z$94;+j;TFs1z<~L<)da+YPMALaS|v++)?Np@w6s+J#pH5jD972FH4zT-&;Rf+L3)I zPk`>%JLQ+}Mw<@r!HK)cQPB>4_MdGZnx9X=FIj|dt>ogGcy8!LeP`8^P|Nfa`;hDm z7Ng{LkM(BrJX1ZmnMLiR{~D|gXdZ#N&6 z$f!Ja>sM70-^Cx+IrQy)kAZuA?OM;n05@^RSD8<*p386=HNBZuSHscMCV}^ZLWTyw zwMn(%-@(GeCK3!Zg?LNL8Y3q$wriLLTPoxFJ}cV9MuijAgs?JlrSguZSg@1%5S53p z6SbuJE1ob&xyT6O3n=&+pDotT_}fm=-1k90muo z?kI^lXfpwQ#^Ef6kW9<^6e2Khaxa{xmy&qfFn2;qA7z#w&G`xeLc@ zXUXT>UQaYBg3oh&IP)@A&A{OJALVE*pE$Y|%;ECX<)a)&Dj8vF?4*NU`dSIFVv~Wj zrpHv|DMn9I3u`vb_VF$`KuoZusKXdNnD0)uCM3tJw5rN2|SKqn6`L@%Sh|)Dnj2pJqijo0CL#ddR2B{pD5OS-E!AjXhsY_A*{fTH!pewlI!i`=8fM<; z{kl+?34|Qgk&jh$y2TL6#XSsC2;xY_T8j(ODjaHedy5z7_%Q3z$jM}6O6q)dwK0Km zwQY|*pWa;f%*&qHY(6E|n{gXk+x6J%AJoIt_d1yedQL%d&5aW9O}v0^xqLNTVsfl& zPj_pTeX(!()b5?%8=7?-!oD$%=@%8Ls~tCz&N_<=1jw6Ywg3H)fPD|h40v2ut5fbJ zYMlxX!s6qQ=sKS2qUFU*@Xuvk?r(>vEHDwRN?o#furZ&WHx#7yuGnq&aVB}*6RJW|ef0p9Bu`-PQ^d{UOb0?p=&<6}v>cy`awu<+CV zB$xv3au9Bxwl0gLlLB`xTZrf8A>v5I?iEH}f?$MmA-61aIBGP+m=wbkBh>>c+Tv!q6Yzq;M<&#*3aK=B;K3ZZailHn-%@~}F?QX>O_A55wwLB? zuP2F7-wchs^;I`(+$=LFGFo9Y?rLFy_v0dH0F~C=(2Sm|)_8Q`+%E?t=DD44jgccG zo?Hs7?;8>RwdbEzYH?K>2TDU(3^M4sz>?%lULq*#N)r{9ok%4;P5Ie@0_)KMklUn> z=cB8uA!oeGzaPLye>m=x{CDhABIJswem!5i1OJMN3G8oIC#Y>P=l)>LAXbL9PrYE| z8sn;vwjZ^3y|P;~Ebl`6O3BvDcpSO|k{aE6pGLT zvp%YelWob56$aY&DhXL-gZk_ki+lU)ZLiDO0uBkYu08RS?p)~0io(?d!_z%C)1(O1 z*ivc9y7UlEU2!`FVN{JJU29Jzk{{P=&i}!t=kHxNxbxJxZH0(bMR$$Lyu8q;(TAO? zD^|I1fLv^Mf`K8Gz#MA%L5dcq9AJe(9>5t!R!ad-=G#)+ZoTHei5QVwMC9bIO$9iU z-fC0G2uYMX=^Y+J(SY#4a?;onhd|qY136vY@pehFhRMI}5Uwd`4=jO)XY6&$!W#0` z4tafcs2U5s8vc$~rR&^XNjNw~no=w`AaDb&kZX-NSa~8<{cd-P@11x8?{fqHzW3Af zadrY20T1rlSg_$EOQ?ec>kt5Ek-XpSkApXFy$F(94Svr`G%A!k` zkASeL%hCZwvo$*Q|5e5Ri)6a)7h0YD>_9G{AJNsPR zp)`!O3a)9+P?JdOANPl0Gi6g{Q-)+sm5@LA?NRKT)Kp>g8c!kq);L1kICxWOYx4MX zYjY}-`Hucs8>(0vf9?-5ZbrA|40d@}EnV3!K}J=lmndo!CZ{^ESf_bHJ_;aqalqdy z`%WA5(s{IVAuMyftUlU#SYGn{C{ONiIF+bsukU&;UL=&}t^d`>o6&Yi(IAn$an}KV zu+O&Pcpvpj|J|zH$+e=0w=>EqNq}i2W5;MK7{1RpgpP0hUka`K!l{&V;5dDH-*#9j z5;U@MEy2l@$Sm_eg&RzeDE3<)yoMVMDm388AxFHGShRBs&u;R<2DWiys_!psxd8%i!~5mn+C7 zI3$c1-eXKvNmiYL;=-;@mrQ*wI$E+&n){3%Ml@mGhs2kw3_%$-d7$`02ym+tB*QGRq6s zkzTDvlPnxRYGgp(xEnEQbGh+{pzK@2*tKT9}~XREQ+wDI>@| z_nwjB<*|Pwd3`3oitP-_Cc+O3f0!XWA-MhI`*?qGt&cpmmSh5@0DN3D`#a+<&NO$vkK@YYkw)*6M(8c4EqjDhdE)jFk z!dZ5sOr#BjA#F@(97WF8)RrDLlkok6k*@Alm9oaC+H7Xn`Bbq_^rU_W3doMrClHhR zyl47}C$G%|s-Gc2Jf35ak50?JVAvG1m$_7asJIonQ$~*9I1IO#xLN(x7oy3ReHPag*D#fB=vQQ!zT5>-(G+Odj3(N{M%YPH@$(%f2)uyj+Ad;(n zVNt)*;kcTfT4BIJ3BF95=)bh$U)rZH^o9OQr}l;8e_7+vf3cse98ECoFyx>FUuK5% zUsB>P>i0`)O#f9O{lWyk4E?_PeGvo6JRLB?;9q)x;JA&>Bf!P1u%XS zd;EZ7h!-=t9T5?h45dO1=T}KXCVCKz4XcT$+q$IjlBE6xdW7I?e&IeQs=MInkl?c< z#lB_1VPR^Rb)g2f@rs_D|VZF-GH6r zxCOI5B-LZ11=~2!7n9*U0iUL>s)_+o|MK`5Sf)+UrHxk`|N9_gu>A_%u>iFcAt3|2 zpGhew0ZKYw5LRutTG~l;BxXV~L@-1-$9$ByS=$Gnurf74!4`gcq#8)#ry#XZEEmv-6_!#qwp#EeL2g5@78gFhDhX3%Ago@lhIW>0-#>fEv?NM)et`@;N2c#PZ z#6i#F{{9wO`ZXA=85$fyU!Sq6^f{Zf;}X<>6eL2Y+CVSfhwvQ^WDu--3o=~&t(}AC zxeVx`1|YV?^*dbbW(U#aFCn)s!Mj7SINrT+QbXfGa_~U*e#nI%LLyP@j5!4zO80kgedm{&;%7&Wh&wh?K$7 z{f!0YK(z@Asxj<#Gf00{sJayt3DRMXuzV-*i^1zAbL+UX>Ji>Y_fr3E&}&jK&i6>b z__dUVo?;1vqbH;q!jXVXUR=iJ_jH6&zJRQ(rvOEMvty zOR*?AV{Np3HzsVZ%gNkKzdV~xKeOTDe=3))LLgNY6*S9-;zkgyLlEik>lmNAS?Pi* zDji!!{?i&EQBr(8N3wc?@Or*wO7Sp)^8`PN3MuY_bDIcBqACCeA{U8Np$XkC5GdZV z7tHjtejnQPZErFjxH~&bdpEkQ#~oMkN)0}3xN>=jkhh%*yvLnm(^1>>cW-LFsBFuj zZ4jqP(W@FRwTfKe?a*^Ba(&8`wY40c$Xc&8GG%X5Gij*A3D`t|0fN^ zfNL#{lC;^-BTu#)X*`q}+SpJs50Hh9*d`vH;#0%yer7n$02?*1tF6IY1YfD zfkapREvXkZhL|u|gg?R$b_&cnGIo3b2FFS0BAf1UGC3DPtyj1iH!X6R)Br*@z{BB3 zMPPX@Y|`gY2Al?rdatksD7+!Y7>gOZ2wH_7d5j@FZIG!0A1#MCogW5KAFxX#0vf@% zbx1D#90SfQ8(3J4UKv9l!MDGGDOYPT~^Pl~W0`!4&m09y-iXj3l|F$%=r#atrqh95xxY6}CN} zJFo1kwvENM#RZ^XBzhou-3!?_Bqr>#q;-Zm`UGA6O0_sW9Ek-GZMGNvRcX7jP@nz-Y1JpDlqvWD8gVA_A zW-h}eJF#NVq&LBb2MEI>2*_&8!pBm2$+Lz{nq%Zr=%*N~Nr- z`v*gbQt;GH&eVw-`Q#kKS`~`-SPWct4?3RGjtlxn+-3poYEdwr2WOT$s zv}iFe<^VH#SOr13!ruE5V}o97LmM@^>Ov>uNHVr*nx%>jMi?&K*S-hJmaO)r>0Hl$ zFN_R?t>K?lr;H}vcpR+ZA2Di=Bs$61Az6qdm=bWB@Zv%;7dW{TflhL)f+O(DGll_cvA5o*nXj3Q#Z0R!6|5ZNWsA+^ zY#hajmkFf=bv^ibR? zgf`0N@5qU6WV2K)0O#!FEWEN(dVk%D;QZT*C@uM~RYB}M@8;rexiO#htLIBG2X*dR z29S1q{}&fgor5M3zTqgC-1Zz_&Q9weL_R0mD@RYv%!%vp505e?wS{JfU$?@VyDV(} zPz2wZoM69!Oec4$v$ymu^ z9)?pPrmeJOMXj-@UZK+RT#4asFPun<7LZjddrNKlK4Ussro-8>krJ0uu<|R_6RpvsNXRhFo72BjRf$sHk8X2C)1&XkgcX zmA^vDP^ywbNPga8sr1^At7y7fiCrzz?D4**X;vOJya}C__N0aJ8Nk$>VG!JN8(3kcqkz|4v4)Q*%*OIU6OpP#%flJd zvLc$lq5rqFq^-3|+b%I7?f5T3a~uc^F08tBw+bis2nMS+D2v69g@Pe@E=-Q2g(!;z zoZH{i2!E8;*UDt82(2S3Q`Nf2o5Qx9L=YFoC`ZSSi4+!cw_ZvK6mE4uZbQ4QOr-QR$CaNW-e!xoIQE`HjGWk`wddV`c5gor(|+H+Mr&_ z#}>xIy{cr&+O4XxEdzS10e11cV@E0Og| zpG08*jDhgeUkqF9GYy%MVgP6S)zLPD3O6EJ1D-r$K)t#1g7>5~_+?Y8Cs=5=w9E>p z?dt@K$E0MVtxy>mmsRx5rMIwENv-kMCpC-=R1`7gwGhSG^cStRGBednHB%hX@S?J2 zh-`wd&{Y{>z1!_7s+yPd_!}$>PG62pB`+s`4A;orWe}%S=j^PN2>=t2VA@^+{X9?d zyE;TXC;PJG!liwo7C+Ps!>sPnkfdembnPgmMx0w}{$YeRlRT3uY?J617Ia_U!byvh z4`7PRd*9qn7f#3Z!mY_BUOrYvCyG%d)v`obz7V7C@bo|h@}YQOM{1Eh-1m+p=_@Ge)ct`5%02<6=0hDkkp1SXD2vuy{HapoLfh>gwz zq{m58dM+59Sx<#aj>z(uXLMC0Ye{@LYA%-Uu7Y3LH(n{h%RiL~J5IlS=X*rv_1&Z5 zBm5?Pf9b%K0ST+~^VWd*7Q|x^!Qq*-7qrJuHKLAy$~kNS0-#u$fJ(c!PiE-;t?9=I zzWJkY4|l8ko)t6;OjwVMX;B&dX1u#=r%k&FY@h{6-ybqA4->T8ip5b`C7uww7$^Ex z0v#*r?C@g2@kc&ILZavhR-(FE($7CQI;PLVufcn~uP_Q(yMNlE@7_?zRbtvVZx!)& z-yY+i^o#aW9LExO$V~8q zTi6JvgrL2|AWjLF5G)8$+;V=XS`~9-VHT*2u+lQ?KLC%5IEWX?k3TUx)U=KHDM2Vs zcZ$R6Pa&S|`|>B99zpg`7yBuQFykPsV}wB_Ls3w13U_{kQLI0XSQks=QR2zV5gZ6L z{UJ0(YG4NA^Lk}}h~ej0(!T&?fUJx*X#3^5 z`;B9oO8}c^KTX&EY&j?U)&3nLRLaQp5(jrLS{O4y0vfu9G_3oX#ilnVSErlsYO%!M zj|*SET(K{2Sv5ax(m53;@fx?9`3^3R0ntYfcVuXcTDtGgnNx5=o@CEZ=YG_nq<=Qg zYj=lM+lR#aDTV}n+s?VT&fm#Sw^_6*yUyGiAK*G7xNGC>0Ehc^g3mGzxGaj#rsP6C z*xyxP-MlSdt<+M*)@FA+2|p`f#Pg%yK@PxKV`NV|IFJj}5Jlq5x^<6ryNy?k7jbFh zQrvpkM;mq(BC9buK-xj-DQp%N!*&!CuIx1u`xZ;@`Iwu9I#b$FUd16p8hqTZQEsi# z2E@Krdr@Y!n%f&&PB!@P|6vb+^p<7F{A~bv1$~x9RkprtkL}}`>L3Vy-lvL9)jXtB zsmnK|*KBUrm6;mp2sO&{EJE~~KswLzpIvMWG?Hjk*xYe-yw!Z~>UqMUUu!NaD#cT~ zQ1hC9+#3op{XZ&fCgSAOAAj&|&(4n5+JN+gbrI=%k8|RF0T+&}x!Wg^P4yVDr?ymU zTicRPx8-0#2eQ>95dBQh1*|_J zY(DShrW5{TPd>Wrx&u{r9JejUdbBxvzKW7Njbu4u>o7lp{h)jzW;xkE(~Hl9Cu_;o z`lTGM@K=i$D^2|aW(*`5jRdlvUnsUm_2@f370jR1wG@W?$?1nlTL#;ANk9$QbENe- zoVzGv=g$);1}cHPE~U3oRGnye;4_frVRFfZs&5^#+h@@2H>9}4EMy%Hm89ff_8yhL zaA2st>g9nV&JAG~;mfSuOS;7Rlpm8mi#~Cqrz`fce|!DpdTv!D|WPp^_`<;lQN;0F@vCuEz?) zuSrXHzAW*^-zxF(jSK_ZY1xrTKyw*3_qUPypY#a*O3ufePW3J?!iDUQQEO9%%h|4l zPd{SWl~zRo!Mm(D2XedagUKuNpOb6MB7o3WjWeH6{VIs_+`F}BUy^k>5C*l7_lmvz zpK5vBzjR0>k3M{oi@0`BU}5TKyNsil4zYURPy5S-)m5$;`T8ua&N_26&A1rSM(pX4 zdDsLAq?g~SA23iw<(WaH{-}qRE6tTY!vKavi?dK{TJa!fFkbJ|FA_RbZJ=R z?uf^$E&3``AOgv#IU#+>n$iMt=opjcbH?IQX`0u^0<3H!kCgEdpC2*HiqlOTg1 zT5}oGj1D|{kiOpf17_S(Z0V4SEhm0z%eNK3$f~)w8F^$L?)D!2M5`$)Yp{1E9yy@T)pew}f*D>-51^;H-X{fmX zStK9wZRX(5BOqh5E`imq^)M^a8q`qn5=Z(epAj1_zlSv%gJ`&K)}e?k^7b`gzAW3R z2tE+v2Nsl3*^oGh*-?n`f&;CQP>7~p@YZdSArT_g^ygv5hL3q4A!hyMcelx+#q61% zolR9o#}sy(0JqgTL9uVZX;iy%CkxAAQPQy7EL^$1&)&7V^<{ed&d9Kw@@+8z*scuR z6jUdgC^r5t@S7pWIH^5K^}jRxz$~Hd?tmKlP0&!VD_^$S@w4|!6#}7i^&>*|nA>mo zUd3dzagwm_O)@(rf3*r>aY?~3ruR*`HTJ@q+kM6JfbgFSKowB@)#g4<;Gy;QdD z^*+%?*4N_KYkU~q?F5<#V>0o>a*Y4LjF5Is#7F&LWGUU6kZNj1sDMIhVGB}a5Tv0lWDKn8?9;U*Q z%H}c(4{Y1M-WRNU-U!|Bdvv`PWzokCt|JAWZ#Ns)`zu1CVl$0a3YoFz3okfX}1 zh$d>#ZrySjl}!#8|5MpO<|j|Pt!y>%OF;$Xf5_D2$Hi*yAzvY9uA{&ToBqw4lX&U`O9D>HfWKtN#2AkgsiK~wH_-aRazyHhmJVmC(R ze)IhOa^%6*ScLa)@$j#eh=babhHa4KEEuB|GvQyS5f_I_X?@*Qlg#oywAb(ar8=ll?xdSe_Se0` zXY}F0R=aTu>RtDp=BtfU&0e6kzu0n2thQ|T&lc-HAMI&(ncr9)^Yz*0)a|svKo364 z>L>|T_p9{4UZlW%gu9`58)0oD{{i|GV-e}-9$-yAG~c0Fefai!)+DdTAz!ivzjy9# z{Ln+l$KXqeM`<3-E}Qf|&tyuM@nfv0*SPwPH zl$_!)v^3+hc-h#2q5{TeS%D}nr1FmplZhs_8?3KgTj~C!{pb0bHleOLnkBG${t|G$ z>RNBVQsZ-5#e_z1)SV$wtn)kM)8n8Od@ylR|M~9U<)(DSjGVbYw32}=E8j4FwL`|} z7$O`LEfd=}5TPsFh+6&b5`Uh+A;F{;Wu|{`YBiHlI>AK2a4f@-z~WER&z@^%KK769 z%Bamb0f*1O$VRVhe@t|T-=f~azb zT6xH~*j=vd&9gtHW`cTq#$^&N4r90x?OWc>#DQ2hWSXp-olIYl&_ z_Uz#G^Y^Ab{W>K(T?W76vl`xEiHGL4;1 zZOV5&c@o6e7EO_emOOpBQSbbbp#pf)KcVE>2LmIZNuk9OkWZfR`3+>F}~!7=@s+) zG3AyWxHD-D?_N1aSGKZK!HlBxj7}z_ov=wxpw2Gw3nigpKtokJVDlbbbf|o>;kq zh1B$rVt!aSs3dSHzHZ&!D2%!%`u;tU(#h|>=KL}$-aaVwE;yF{#|I+Q)df{x1D)!CM z`I?)r$s8P|a^Vnu<3c@5d#Bm4sN1(^H#!X@_67n${vi{YiJW-=cH_xnn=%s;?q6Qm zh%x2{&09ft+F^0`BWQ;032i+7I|gE!iE}9(9K>e^-=N z9URPVox99&(Vmhag{UW>voG1?uB&`5$5LBk?TxFAM|f; z%4L<2J59GT%Wx%k`CXARO)X|(N*2M{QT`>E)CmAZX_*+-=Ww`Z@P!R4y(8ZKpMZ-+{NT@7AP-?}RUSeV5X(dqa1-O{RL~1un)W6XN+9u(^ksi>${|s~1WdF&&)nk8`UbG^`k1Ma7>Ba> zi`fDPC(sa9m<4}ro1hCUUgI7+pKi`7=}f#{*Q0rNGMWE67V*nduFWWvcNKnSLfT%; z21xW3>vP?&)I8!;xiHYNyJKvsaw@;;NK4nUXd)FtfJe>Mvv!T|q8OJAS_Y(8z5X<0 z`OX0^KF}mM77g`6YT+12rBOo?BeU9g^C$pxS`Id{0i0eJe}7hT{8*nct7*__I*hz3 zUF7F;+*wEDM4+?i+dkL+c;@b0#(({#6WvV94WGeCd(x09YsTW(LWhKx;uCBxdFHzI z11kgO@qFtwMZ#4r8c7Ac(yQ?tDVo)eBhz&K!u>EdtE2wpNR?*C17cCwyvG0=hX5Uz zBz6A@d`D4!m-lD6KmEB8ZHh`8cxQ^5s@XT(MS-d_YCgEB&9;Ax!?D?N7i-Ir*y+~1 zd(HIuYqddO(zf%ppNG*)TYLY3xUYCoi~&zy$?ey;El-(URSGMy`CCa|=p&f0=Os>U zc(i}^KDT_;q6t$AR~kB_S4LK78Q%%u^5>g!e_)PMly0?VMt)TjA{!y&+ldS@~X(2g5*2>T9qp2O_9ofr0Qlqht|XRu2B@oIPr#Bw>f0 zOYjD9%z-5KgEnMzObH^E0IrA#m@PGm_IKj-B$2#r<**Cw_cGx9;Px)9Oj{6A)ywI*K-+D~K z@)oFrfK7L(HsbH0Z8YTZO6t96ZiV^|H_qlM7ZC^GjWTFxi@hvq}UfTFe1h|OX0d6(>`nJNpW z9?~Z=?%Gf3|7Hz9B_aQdHNZ_KUx#VL_@8v}|5JTtO|IGbk~kZ%!G8M!1z4JJH(+o< z3BO!f=)Y_pzwAQ4tZ3-J6!8CLarqVE_r)48f2nCjHeobjzp_*5nZ9D3*qbspVZ1=W zzO?>^wO|xqUYY+FGf?_3%%J_1##YId49#6b*y86)YsnQJj-gdWa{kt=^l`4WgLwu`XvD#kMZ&qE|D5NDV${q$u|$|s zZzT8+Wzd@-W?7T#ULpFJGqVK3@2 zrq2P7^+|%#^hX1cb~HzZTk(jX!v@EIbk*BiXlLt^r~h8q>Kzy>q5p|*|Nj#P|D}Nb zKWqFSQM0{~6&x=w!~Z8;{xWH1{ts_}#>D;=i28qkgZAWzT^MYDV71jiW(d2Qk=3SXMr0kCF4)VdY0sTcBke&zp`d6|QnxTx^ix!0! z(&91D6!$!eCkPQjn*O@Dlu4%jK&!b4@37PNg;ZEQfdoXb(tus_j5|vD;czxXgD?w% zz;Qc>e4i8KV-@152o!2Yyzq;^0(;9R^>S4^`2j%lD!|_wGF1f1FS!`MpD}#&nxCJo zEQbqp-Cz-U+>(dTv(rRP&xpB`IYz~RwxJ$ExKwjF%I6}Kp&qUw+PX^y)cWW5#sb?_1YhZ29Phd0B{3;J&IXpoBdBo*w5(3 zrki+dx~I{tYrAOPxolnvRMf2z@vaN$Gr<(~`k$w!HPF`x`sU~VwkaCr9( z;d$(u4@}CU%yP&IFw>0n9}pbC-Y(LeCtXtfB7d*@_4i)8(Qp-VwYc$TyuB2EmQtD% z(LP71w(=*7t>en%%;;=%!6(=5;)Cz&U=->g&LEEY_2>L#KJfZ>e*3vP`S{QG$G+KB zyhG*tV~@`3DYDr)z1L{^&PhO6V}(@dfBU!@9unkvxv_g zv7_OY&U0J)Y22aF=Sj|`UGwdrpX2x{eb*lK{q$im^zql{sYq3}?|a|k^DTqPDnWdI z{Pytn@U@h$(*ux~!frVN4_B45n|MXDTP3Q$J)j@fDSF57qW|_J#vQ6PeXBFX|D6x_ z$MjME5wzk7-?@OCeCIbGe;x1b0IWZc37_a(*Svb(7XgPu-h3yy=)dBG|AK@5+7cu{ z$VcLw$|urd^lpEAx^jFu5?Owb_`UqF6Ve|tym!`*MJNqO!`D9V2^6qEbR}?GFB0TCw75alH+FDbN%}I}LBCLR%IxIz>g%g-8a|$C3Mrh>o;YLCo73;1;!OZvW4XxJ?vAPGeSB0h1CGGZP z%+1KQ$DC$~QrM{Ax^s~pr`IHd7CuPZ^I?ANwl#@WQj4m(WmfL>+a8)j?$&^@`NSpy4q*U4yw5%7Ed83Cdc(m=XD5hN( z((p1w6OWM0SGD^}AEJ}T=}C8LZ_09-$1?G}1tJLP2l{(lyqp2ol{QX~nl1v-u{kd>yXC_fSY0i4(Tqn;OU~zcbBZJIa@JAoXlx?W}@x5w*jo_~_L5Zck!LjVxE@#? zgA%HmEmM^a(iw10AVP=G>Cuy5ZQ~d*Z4=HFc0E6F7Oi`=qdbb_e!-vKI$RYc=ul!A zJk$>Ji8^Xc*9yB%+G$9l>cVdVJd^Q zBCcLMtEsW&0AYiNOQ3l63nH)Q9Ka(7>xc}3bQk|?<-mqe0tdepA-%q3rGSMg$hyep z4dr~Q$W7ehpT+`#uElPX&c^&7Peu?&rOAt{%{BS_$R6av&2J`7qJR`74n8Lbm4bC@P{B8YY zG7E=5e;H#ZwT8*YA)4!EyHi=hF*PLa3PJ9Px2tU6(~|Tn1A6nUki|4=4$DUYDl@Xe zQAtE1!3>(5`(+UjJMSocSCqKqmXIi8p>`FoshXWxyU&y_@psDfg2cj*( z_^9sqXe)OaDq5&|^#!NfR*{_!LFu(!UOP{j0}Va_S)!{rSJSus^(cb`=QhkaaV|HN z3pLSwJ7VhaWM(B@h0~*Ml@x1&@iz2vX9y@Jfr3SK0NSf zh;9Z;=>@P((=$+_ue=?7&5XmIMcH?RvW zG}FYQp>0$ETtr|$wMbe0%d)2{A^x2 zkCIzWO~h2hxGg*!{KPj6hk>9+S{~9JzR@=B33!kwuNCeIR5HX4c&eq z&N`Ax4@Q%N0IiGo^hure^=6VNSsk4^TQQh6p?XX<8@jNIIBP5a6=ZYWBl8_&3cc?9)L!>^-s(W7F@?r04NTp;-uSXd1m7x1DIUZ>+-XM zo4K0+*13nrbqv4U>|k#6M~F6B6BfhVz>|zoC5O>)b1A4X!)0iht&PN91k zauNf={itvOmrXza+On86bMIy|G15w5-_N<^hvo2E`M%~l?)cxODjNfjhKI97^2d{J zzG?t(VWyBogxW`f_Kz<*4>AckNI?Fqe$*x)WARt#JU8x<>fY;eXI-9k(%(D%7_Gtg zkf|YC(u5wQP23MetshBy2Atbh(oe${W_&(*zHy-fA(;igLbX=?%Snq&aC#s!l|YQm zdN275*G0*SGnehQ%wkEs1%vrsT}-{aT8C<4fQ@d2fXijvV_0g6EnCs5l&-A5V2%b* z4uaE!Q*zbIj{D1jqJ*Es_yY^P1;+=07{6S!$@+(fZTvUoZ{MR^q~)8Ss)Jgy%A=rb zXD`{cw0*l1QI#!*wr^nG_>Kfp9t((UOD2Edxpeq)3 ziQ;Wsmkgl!e(@}rN| zLm&=z1-Iso_Hp(mUZc`n<{O7kx^{zyEBZRn7+6zrE}l1z;+z~}@Kn*jvd*%WG*sGd zS{RQ?G=6s*BVa7Fn%62EZ#TQ1FAL??rtYpH=|P7~H?HK9kYxA(%TJ3#$AAEEyt-I? zFoYO5Y(c#S_Mt$829p2A$3eO}E9PM#;KAd;jeyz@>SLQu(Bt3}3tuePT1E&mY(lSt zf1vlUVaAkh#KM*K4*;}GO_kF0-S$J*3+M1$IvXvff2cx!gNQAMwe{f?;LrIZ!KuyB zB~`>jC*7W-y+R=tjpMgD7Qq4-{(JNmB!Y4hZ(im$q*Gw`i&1#(LY-~;W5s7y_3+}? zQ=#^Q_0p}l7>8_`JElNadLK*M8}(4bO63eUzDXJ#i)vMJO8hiyiL}Rcwo#=$*|4BD^hG`oQ76+p}uW`$-y5WW9zy2a4&qu zuOt9QyRxcJ`46oPV-KOoFyWW~lzypO2k~tW9rbqm*Rn@_E1#JG-GGnNi>Qkc0i@4Z z6pC`$*$TUVx2+f7#!Gx3oFI4XqjQHD7nPV=#H=6xFsv!i(P8ltw_gI+lYzmQ0^8vSSJSsD!mrAON)_;$2Xvf2*;?qca^B0ZQ#(}V zEehpKO7L2e>kBDLn3|FaC_;Z@))785R)NuN|7z6E0CcNVPsBX#3W;eYqe_z`j}E&v zTpV-=up?=*{@Ndnwn6?L)+#s*|)JT2FI@HRw&WB(gvB5p*v$5S`r4Cd}gfHD8}Cf`#*nv zlszt#5qJ4CSiL6=43yy8*g~gcVK8kx#mybKcF;A%lvdp+gfmY{V0@~>_sE(WyDb0R z6f{l$b#SrS?8yk!j~2r7O)$zH&|^o?(^oA;rPc#4#MvMuACXL?pCs4I9IEofV8NkI zT`3j2kCZxY!6ixRuu2mb`l$M{j(c0+@cU7+!DmsTvuoZ1w_0srHX86G@{qmx&NO?R zRI?E)ni7;Z4<|IN`|bp1{;rEbO7Ug4eU;q4$R7KsdqV)R@XPZ@!9cp&E-&01;x%aO~h91zVYSSzK^wG4aDqahSa1 zsrzSkDIpyYFe-65tO?C`6Zw2>P5iEdXS!R!@h?8$-a5^c1L~+Pbv?P@2i08l5~;LX z4q86Cr3j!R2|M>KGA{YH!;E(#$X9f{7balK?Svl{c_oyRSXSgzm+-noA-!i$R7*oG z1}eQ@_k!aIK?$Ds-J}XU-y0>Lw7Z^5;2tC|s#&lvFKMJl!bl8Rr5wvOC1DD!*zHF` z5(T>03a*eGQE9xlDU3&>MB&~O5A;BODQ=E+sXP!Rh^h>ss3h^iKxcmW^)yk|Dolj@ zHMkEoE)?8JVV)Y1hzU->VsylIY~5?@;%1T=gQuPoE$s-hQl74+}Rou{Z} z5!Z9IoAGB7|imvK^ncUH#kSWE)Mrbd7(L z+G_TBeK!zhEV`(F`SUQ8CNJXsx*J`%t+DED<}%;w>~i#1<;bVd?JSxlkvXrs9|#ch zn^r3X6cNfaf(FAwLhz*?()S7`uWx}y`VTAwB%8trEai}eRt#OL1~s}-e0O4!nQ{9@SrMr!k{gJ@n?mIZ=aAM@lqOnki^;->zeg%t= zZ>H^GrwNfCMa_m*cWqWxwNyQyfuaLrXIYFL)8Jvl1smJp#wle(;ko2%^l@AlxVJ?k ze&>4IQpCHS-SV!|uqfmztuR0n|4XnnQ9M+mIK}Ro--lpmCyyfdn_nn zsHPJeS@XD%y1%FQb#nQh7JpUVy#+0m3}s=sN-Lk_=yBWxb!KF`yBL7ARN79^DG7)1 z0)s~2XtiGOXv8L^mQEnr;d{r?b>B;FkGrj(e#g;yr|)P;R{EcvwY;ocqT&hOt; zPYLab*8lng!0?+QbT)$KFD#3V_Qv{O0w-QBmSwZx{wkCJYu z3wg5oDQFw05D49Gu}(loh-QtJpQflYwOoVFNrs+ZP6B^mITF2=bZJGZpv}-Y+m-NoWpD9vbnT5-W&Og`If|I zx7(Lf2-3oj%tPBI)IcyEh8iLb7J>y)-a$4)i}Qx0z={nCHc6nGG$j*OpW%X`%ztc0 zB@zo_QgRX+%cdTqqSZi^RGcNUXj$-|Q*jK^ftf>10_VRJ*rGQAtuUU+B&TtwEE9c% z(H^zZbRR+3m;j=11lLH)T{hN65i`qBTdYgJ^Om2r4)(vht7Z@pLWA|wG547XVKJHV zj2&WqDqO9MeXfDI=8#!C?CblFBS-i&_e(fEm+Yf$Bjw}tom)C(8q zeI67quLm~l-A)qt%5CrKI77GKBtwhf1jIWnALNo#Lw*Bj12_M}xGC^V4wY3SSv*NGxpK;+UB+Z0*&8*&WymepyMzc<`O1ivP=TlU$y4INJ?*NOm1IaUk=r^3|8Y41T)XQ&C zegHL)KrO#Z6Z1rQYt!*}yEEu;uP{rucjO;)9cz~;XDvhgmw$i@gAY2Jqt;ft$$d-u zMcaD`;o@dmP?R@nZ==tXZEK7WzsAm;^uK>x4A*ZA%{{%eZAfWyFxXpiAoBa5bFKhoeaw@y* zL!Y{;o0+uje=Tp|(J;U@&2(w4wAU4o{5ipI^%mUod;FTMw@A%W7uyLz+Uo-hn(w{NyqO40A+sWib;FlJyFxoc=Z7n1WDcG_v4Bss z+`)zm?YkVGw=f~8p$zqjWf4{OH#xXfyNf`NTCR&seF9lXvQblDKs<0>#rkmmcC12NlGQ>$3||pzOZ^(WZ9KI#9IQh!0E}) z$zI>JjV4+iK%8b2a~*}ou(vD60N_D?eWypYc50(+?(BBHT=VqCepbWx6y&elS=GlL znvu-DFygOudj96re>^ci^#hc|nKAuWqMw3pq3Q@Vhha&uZ_e^)v*Bk>&nbPZZ5Kz) z{fE@NZ$*I8D`Cj!*NMxOB!rL|wB?3i)};>uH^Z`TGQouYAR!rT&;>RN7EmKocXC#Q z4%&mcOh+8|m@HS|&=X^;q?YN!zxEbH&9Cp6IlcWkjeiX*{Myfr>_h}w^1e1dcgVZ# z-C4Y%5r;*oH*(Be6A=&k`@pFVx%raUzS;3xkINa1)UO_hD7uOlD{>Z zzd!eo$w`13FIkMBOC`qi3>Y@uAK;1E!x=_SSRQ5kF*eq;%s!BCj^3j^0p+fjaos1S zSk_xWI2t#+y;7e|N;arPK_d!bVU<97MbM%)kjx{&vpIF0(ustIs|>T~I`&i8^p>R# z#7i(y&2h*Rk;D;xiyrd>Pl9eTRcD4|-u>S84m(~jO1$l$e&t`q6Yz@D*F6d?f@HNq z$Ham;#6D@Mr(`lyP`t5@8t3FfA!wCcAs;=h_h-UuA_(1b1X{t6{KujRBOeIm}bj?*a5duLVQ5A;(aR%&o$7}*eC$2m0maPp{jMwu)WZ>!6QeS+=vS%#sN>hV#WA1!#ZJGFd z<_LV1v9-1wPlrpntV)kp%!S*1)aQJ0CzJS@zf#>SbE$GMW=6`2*>#N)_r6I-CpV=3 z4)f%6{-lGW3Me?P!(NlE^~8F8XZ8ZKUirCS&ZF0Ycz^+~SpezkgYyp?G3!?+#Zx!`9GPZ=iejEPk z(1+2!z3i-4W51L3t?w)q{hM<;^&7_MV|4JfF(EMzSadMlmN@;$)hx^N*7=PWa-XEi$7Al3@0oa$ z8a(l2Za~mOaoV@$@xz+7+2KFrWrw_fGt@K7ddE)pAV}l)wzO^bp$6jL?lxCUtNd<| zjct2%n(zO#J^&cI6{y|!NucxH#zTy^%k7aGauy#` zSDTtL_#&%g_M6Xc(ijX}qab`V8B$AJ&Dg0%4ofyn95V4;zz)BG8uHtD~Aa^@xy z{WnS~5QHHqZv>MVPQ-fT^V_9#` zOo=DZ+xpP9MA>|MNimUC0vH@rDER-=EGRxKQc zKXe|ANfz7q7;q@{teBV_WVL2j`b%E7Rsr&*%jbvwkMQs;`&nyZynh{y!}n(uy9bDr ze^=tK2mM>324ecPQHkIAc28;=W^#in8TrAXKOB_L;_Cr!o#a#;Azo?FXEewv4BJIR zIDRiuCIqh*elYAn@ZS^Pms!FYmfVt}T?nLo23!Pa<0m2wYPx1JDRcLsa<`~?>wugj zK8nbDMRuUWDX5$&;b-RSbKjJw%y3yPXu}j1Qi-lxlqMVQKc031kqUe(wNClkJNkGU zWtw&@%XpX8n}{3#gK)XbK0B4zH1)f&Sd9&Ej*DKJSX;Ej#FJKXBJdYGBhzu_Oz^>! zf&rJZ{%1lxTwi?K+Mej<`qt;ZYhd=n>5Zq%@+#wlIkGte83cLN3~hA$J9Y@PY&l8_ zRfIni(MWmr+~XajOA@kQ%MH)z9#ddw*vql^SjKzvw|P9VRa{J5img)4(3_iIx0#gA zk_uY*VtPU69J;#SA%ES7Dk#B&Vp!JcRZoCKv#V)~W+h0?>tOjfm_`svmH>?8DO8O* z^NlO1Qr0k*-stSW3MRHIt{ znbYwNb$Wb8w!x|(Y-b`RXo%Ma>>0WBCRWTwLRWqa9zue*RH3k6kKDPLP} z5wBXQsD*a+Gw0!z3+qXaZW4fhZ8VR*vh>eu9n#X(H_+la?)1q)9;#ZRT!o}Giue7_ z_R$&o$or4IzuGL#8FMA&2TBZn9G(!10h?0*xDkh+35ocRjUVJtHY_?C$&I~O@QXhZ zI33jY_&6&?O(A5BBZeNG=kEZSQ%8%TBh&rJ zWg`4W*QmOj#P54kfD6Gv{wpr3SKOYmGrnNhYA&yK{B_VQ(h=4{)%Dz_vaz`VuyJPT zK)3}7B@>>z3paup%{_ zIQOm9JzSHfT*dNa&K0PD#X>XIvOCO6JYmK&=6+TPf*VSeMTl|5X?O4M#&+27cQ&wF zcinmT6dCSR7IJxeN{$aW!0~Tnbn+$4dQ?u*$%FPgC)R zH`v2OBanE~R+#+T*#Pz@SJ|eM;H^iGpZ=LK^R};NmyhrJa9RF`dX>AiJeT0Y!&CLo zOdR6!)u)n0&vj1rbKNGT0ogMohtNwfXpBBmXGQP+mSBI#CV}+K#U?6W?FR|2>hbkd z-b7hwM1DkQL^l9+c{s7aKP(qwL8}%EAKDr zkiA>qDJn@vWZ#M*eAB#MTb`r=1BR#*Ob3Zn3@+0&UC9zk({fh+XJ*o=*2A8fu6OY7 zg`Az8#qTveCjYM3$u*57wnBP&-R0+V^)cT9N|u({>(zknkF)&v&&LeE6y!iqwVj>Y z1UBCTNkIlwDr@FQrfyIyVhIiKU~y}hAW;^a1auXYV~_g)PE}7_+}4V^6|v4(=@^N^ z#XE|>?uK+Q#iMym{E<(|Ka!Lv{BwpVDT7Lmvbm3fvWD}p`PI8_BW3gZ3}uV*rl zepog$x7TM}HEQooia9u&Ce3l3YG0OJ`{Sh&*SYT%v8@ygJR5p@{~k6NrF!+VTy_{n zg;Y&(um8qVpPuRE=%^JCfK_(7BWbB4nw2KoFOb6&5rvH3~I;^aRzanHPe z#IF-FMbGZdfVC-L?sXe{cXN>&G_iA^3*X>u`9}d44q3ePU7fu0+dd4h zC{w~?WL4N*!p1&~cfOyD1sHq?T}n)aN(#<^`%iyYKxS6#V>!DXM0-T=byeDmtbV+naGgNUnO}1zFMV#14r%;1a z*LPGOUtnp+4K2-{^Jeh7v|r43if;Rd9z=%9A=dy@g59>70RvtR93lfLSJ3$%JRJsw znU5C&epypAV-$qCwjrxPN=mhAZ$KrKuDJ zEfh7pDY+8Ry5=GEh7OFWk`j|4E!QaT=J9V<#_?=nS)pnSjEwBG-I?K1I zg0z9Uv>9e1HXOlQ6Jj4w#$+ggM&k~xTJli*jmuw3WqhRNDX)k-iQl)+)x{a-xv(XY z0F`xGceIhV-nWu*>xqIT3VQV{MWL4yXne0+BW7-#7^rrm+CA=ot9Nb()pGAVbclAP z+T;zF7p%;$D?HeQ2Hxrq?kflNRRKWC={m{e2aq?5(HVkl;BWqMPPy14BJN{oUxFDw zB$ZToxLCpsfxmoSS%4VB)(FyO{R9HgY?C^RXI7~$Q5F5#=TY8dpqBG)5KvZ1zttJx zz6k|mzCy~g@oE>-W9v#6S9;K1LZq(7O;wYUgb`;}5iVj#alMA55aryxHPn|{yp)jJ zqpxTxZnJhTmfoczfz;0sACle-5KQ9=TXVLH3bmq=jhLDe5M2TjLkIC}wTK4n(HoKJ zoK%A7G5IkllvS(0si`QLYN0^7($6irgz454xWt{5`nbYm_{nJh6U!kGnNe-lhRaq< zX-rkZ5VWgFii<s~N%ZvW5T0a+p<59KG0tlk2 zQyls4j+lwfxMRQc=^e#m9mWd65N+^vcu=ePr7$TsuP|B(?iTz%AxeJpk)Z|dOMKh# zWNad$r9GSrzdQMLnO|~nz0F7R&y4jks`6S>D(uQ%5jKbpHP8h1so37-KSQl~C=lqgF} zFxcRXOPx%+a`uQWN3)0EQy@cmNfCl0z4tvJ@u{)y`d7?ikIc|^asy<_&~V;~##!ph zulVhn%iZ%QI(Nf&T0u9!9Uo*SfGd0W{c^SY%vftiHEQQ#3-_~aaN z2)d2E>4z}1KygF|Ye#yL^Pz9?<3LCsk)IqKbjPH>7Q8q6L&)bn{Kb^?332u(d>O-` zCvq!>oT-qX=AE*|PEAZC0-H{2zTzK}bY%9!p9}qOz?+0hwug=P;L|NkiIXiSehXYyZnUmZP6R_$M9)=1Uqqak~hzyI=aZ49s_25`;=*Tw6Er0W~b~7=WVMiAFJAy|3_Fe1N?)!&dxF30t z@LXI6hg^uj%;RH}QWEZ~}Jp2cwSDSyD?~}U}Jhaoda##4s3n1FzhSjdZsf=$X%I9QOUGe7UBj}gJQk1=pT5^ z%BHZ7KWTr+E2!0!%Wf{q0y6lr<$Tq@GR=-QB~*_CI~t)Hq|My!JnjPbW|a(@J|Tjf z;fRiO_^m>#z|}w;T+($afXB>i*xs$WEU3f# z+Hc8H>xtGSiF6+mUrbk4M)A!qAEp5%gg z;}Y$c?U$dU?o7MRe_eiEoQM;95EsVa&NFNV;iyxMvTiDa0#OucD=RFt z4!J05Mmrzvus`u#9tKeIa}`HA?8FeuSB{TaaSGSXGQKK5 zZobcJ8BZB<)R_@cl1i>7aXt~BOD_T1)YyM4F|j*!{`BA8K*A(%MXuMw4QnD;KtATcnmMZ7M?L~Lvc;BCM^O`!A*F49nQ$sK%phLUXP98&u^46}OJ@CU zgxC65>`3Ojnw)^0uMdjaMQWuVUW1Q1wIm_%bHR*d(g7(e`Q8wEdFeYfBKfb%&ZEwV z@0&M_Ki#FZy#)m0?Qoy@Ue`#8@~xxyp=Wl}f^L3rno0fWbrgN>aFVS8$bEOR{_Y=I zW=^-(JZW9*;w=ZiZ}B=k`aUw^oyphKPL;?h+pEtkdInt6zkG}(+rq;w3$ZqwKm8+6 zzT69RA|mN$d^4M=b1;zRsn+E$-S~BYAX+pxo*YB6GI~Dbz^!9vYQzX4qd|hJ=Uk5x z9w?gx(jyU&+;5rTD;07Iyvei4*_)jfwD~EgKT;lbIbC<%%froFUk-buB4K!Ar6hsX0S6f_wMm;l!V@@5sgcO+)!gXDsM-*bK<$H-NRqVKwe4Yk z%KgN^OSPXe1)=^^wwSJh1Iq}SlOBKrO9UVf5v}-M5PUqn)>FL^eV8iRMF5vJ#B(EE z?8x8)0U!>k5c>HUg(@s#Mj@4QjL7ucP!UEUN7zBKOq3wcq#svb9W%IN3E9yDsma%e zTXcF7*q;r!DpVtOQJ4uJ@t|w|IrR@Eu!Y90|Fy?+N#3`6(8%o3r#pbz{`$eo6Y!1q z;_W}Z!t$+H=4aML2dgfi)NU$YerewKKM&U<`=+YT1W#>!sMcvR@7s)4F83Z_E5OUh z#@4{uA1o~;wd<@)tGeM0Zit8GJ&P4-lU&7(UOQz*LZw(ay2CKZCBJ#gTu(S>^&Bio zNUu0_Tmk2O`gfvgwoVH^Ey1zL4#>&>7rowXcR1s|V*T46k2s=t8!Mt!&!QYNfv_EwK`|IKx37>mc@VW9Q(01?zt zb%r#Tcis5H32DPw@!9$6Yhybb^^AH!iW?lf?=1^+?Pj_uOtAC1OpN4C3`2h@cd=HO z<{MDUxRs!BJW&9E3L1}{=q7aj`^lL4PLEe5pq^@MM#CSQqQilNZlhiS3qdtL^t}}=na2fZp zmtDE;UxpMTG?#ANeLxEp8@VFK6sAvMDN~J(&4ulO?Lb!?OKDH}PT53-I7xe>n^tA7 z``W;hNS=2~0nP9vNjWeF7}`E+ZO0Aw=o1-Z=-a{WG<{L9rp#CWse zdT1mnr+F59;1ZMvz7^vP1w*iP;vx~1X*fsh3$nsizm_XIQ6PtMR!O?(u!xFTCRbSf zJ-9$yuQ=Uu#piD0q8WC+Fh-bxisSv1r}gVQV0~Rv>$uiixt}A&GLe^l>P|OMw%8iq ztYtq_hD;0miCv5H9OAi=T3mV2%C7GD$=cl`oKc;`o_Bq}I%$BljG$Ske70g24PDNq z?`#ekm$q&whLu*uK&qRXksn8wB?fz0$0OsQu7niIfaM$8AzO0uqi-fjaO6B^!*&OL zFf(qwsGWkFTODP9!I6tLkvn?~ygDv>B5C(l+f@V*zT7E2u*6&@Tz7utI%qgV1T3BI z2ldl&l)p`6FKaAUAs#&Qc`#vI8t6ZUc7~qf9(vXv(gMH2)LjgR z)s^Se!&xaG=5{jc(}rDAe+bi{yH$paj==(@kzW?tGXumnQWC7Q8G$5O2Uj8&v{d%t z%**1%?-^C_m5aPMpD5k`=GepF9Xvz+aCcpy||&^AnTwtP!K#+OgjCh$u)qw zwA%fKPvM`U>=t#hBH5JvT_}pcYM+uGU64i+5Hots`9leZ{3HbUJuuV^xRjssVG#W? zID8R#$7`u8E-{UTbS<@cN$L4qA(R;p2&(u!?8#k6Tdm{RdhY17&~Qpwz1(?C-PN2Su>ni_IR zl18{5_B?OX50xk;W9_0M8$ughPmiTstc|}e=UnGPjNxkB5zjgyoeA9_Zn6Nu5}p{A zlQ^#m9rz#9UkMZ(r|wqWMrFfGO~p;aF4ejx^X8ieM1hH;>+l^A_9z($sWW{B|964v)%5QaP zvy-lyWp>eG#M+F08s5-b64y|WK1mjtqzY==VaG-U@o0D_jDYPRPXpLf5{Pi?1WW!> z)R4*XYL5M3qmYZE^V-&wNs*XQEgaH9A3&NL$V=dT2}bgW!3D8G;u22IQ5Ni4M&-vWil0t3o1O z?dF3%QHZb;#dlBNiwxj;@ze=?z8sOd{_ZEZBm)=0v=nQc`@A=`1wIhGB6mTe4er6i z*kZMEH}X5sIomluk*mbB6n)~jAz?{%m-H4UD4|r=C!Pm?33QdF?v9(T+fFnlG%Ry*%wz?`sr3n zJPN}<(!_^HbUq|C$_a6`#Hw*UrWd)F1z0)alZgx5UJWU8JP&97q*30>xf{C5^R-7` z*FuA~fz?2z{3ZpoCiZ1-?4IFxsYkVfi*>2EC-)_m=*8*OX)IDISLMyIGdc-Xr3Q0| z4ovF|ki#g3MrOnnk|V2& zKdA&i%ga-Z+=!>vGCf)1OY5a;)osL$veod_up65Mzj}!va0$peB)a^i3CZVsMekla zb#O**ZzsQ4VBjaV&!;esA6kb2DN1oN_!p}|owunmW3<3F)qQ3X(OXAp$tWYXK*nq5 zHgtba?7=*lyY+9})-b_(Cg1o;Tw@aC|7r(xfYF?+DtTMQ-(&nsEN5g_QWs8j< zCb!C1mA1dwtOO8#I2ifq1e*Phe&t#dfe*<^fVD82>^U9}BZz!C5Fgl6U!a^0MVK=HcW8^)TfwB8#fbFtVfTO&n84hh&<&~tgO)i#bcGDo| zt{F&ck7y^D6>|~LVNwN~q%7`zU}8DjIJ z^2bFxAwJZ^=l13GuPoFjhpb@x2ERLga)H!<2QXO9{`#pkr6ydseN0XQNNf)fptcpQ z%U+N@f{wc8Nd4Nsc1|0)U}UreR#AXOmlx=T0c0H|?eXD2 zVb8!%bXmE7_U+)?2z*rr@N@;`=g9xzqIDk?`SNd_8NmcRonf{;C=K?0sqN7Ugh{2P z24UrQxVOL7J^P-oN1yo+>V{N26xH&#tJw2EOEtO7+bV`hHfxjV-rE$7bgfU0fN`Zb z-r3^yvl~cz%0k1S<2rGTZCwI;*Sul2O|uRCu=noGg)ipix_JbphE~!(8D^pdl`*O$ zWFj?1QIbk1sjAEfZ6bv-ITS8vAd`wfLFwS&m^>loBBKvpUC-=K&4e>_ZDjhN;p#NpZix$+KK9S}vJd&J zF;Y4Q=00wE>oaNs+8e&7T8q`bjvI8aC?Gf{XfVZmzF_^GR7A_51>vA1oNlMvH0|MS zpufN98sy^WdtbjOYiN*LG?0re4xigx4iktUGf0>7>GpZiALZ`|Ao<{db^cdNv75q7zA%A&^zqJa7IuCC{CA)QV7S5^ zu6xJ6bIK0jD(WC^%pfRZpa@bTCmbjVM|l!qDB;N>;7~|lbx?shq+BF{K_JD#kQu#* z`z>tuv9O>3%dD|CL|{h(QW^Gw@*sLAK~cUz$4K74fYQn;AFObdrKr70Ag19YI@c3>bB1WG@6 zbO8~bDN0KpjY6M;7hA3t&lry}7B|G2i8WOE$D+27xG`yW*m&>uGx;0pyIMe9gy$P^ zetN@f>St8AfP7wwTsf~#QqPouihFrag+TA5x1?cdfL5bqqvS36xz>5UyYM_V{jB;Q z$ZzccAMC$@dstQM0+L&$&wqRfnyT2_{k=4ipV1PABI?{rrf;9=M}TG_lZgIc)!`Ay;15wcAQAg=mR7{EY-Rcd04107ai21!H=c2o<2 zyB5M91qcv2P-`amFz`Gvw9TC!^2S~lp)Y`z~2arF^8#6*3fuGHF zNK}~9U^>v*j@t*6lcsPFAbmAqI4=$aVD>NSZP2AVpk5FyeMma+8=pbhp%7EsnjlUo zS66~wn%|w^kc{mo1(c<(@p+CW$eo1Ok?Bn!5eA*0xO=@nOhGUtRe6LyFHJ%m=jP~n z3*CSe(N3ad!w$W`767m?kFwx7SE)Zf*hfOxBDg&2Ym^rGMtx`*73yey{ey-Rp7v*O>gM76`!IYwndu zG#;sX6E=>y-s*f>i0*BZA;T75tdC~p|Ab-_Cub8So`^k8OX`VF3s`wnmKQ#L-DKlz z01Gy<2s5>S%*m5nV&}6}$PisxfEmOegUg8#Nn;J;@dw83U2M zT@N1!Peev1Rtli;AA=#L0E9B$L|y{TgheiO#opGoq$^hER>yVG@+1csf_3kfVVQ+r zu+TQ?0NV#fwwI;-FEj@?-qW&i%XMw{*#SCx5qmPb1(l$$6_ux|9hD&dj@6$I98VoME0*rx?VKMSbqvRpAcs1x!x0Nz>XO702sZGUop z((B>i(P$(neSmp~+DM|2x$6-ufYBedeFny?%0Cmi9Yi!S36LL0rhV3&_LA7LNI3!^bMt(ha7M?=jIMrDrX z?xm&Ul5WT&1P6#=2}l#k4IE;8@xP0T=+Q{)k(}rj3)-UtX0_vC+PtoIH+2FtGS{Yr z`20;>LBd{+;KDv8Hy{CKpY*R=o5~ZHQm+n*x5*UK@swR}2y{H?>^JKOE)rSx&-KP< zZ(c|Fo@l0J3xxc=x7PgEafv*_Xuoz_M=PKFEG{SES6?+q=SLGbdXKf5VvC>qB|!7# zyq@pjdb`+xdbE!X?gYXw|I)s(06wk0SrYxwc<*O-+ub+Cdboh|ES_E}t^Ok@MSl)5 ze+`wT$()G(xxPk-Tmml-koda-+!W#pd9UY-(2(Bs)Qf?{n##XA#glu{-Pt0!gotkw zI*`3&TK)R`U4)B-5{p3r%h#hw>qNiy(b>n)bwkp=;za%QtD@q+y1Jx;`6-9skI_jm zn9OQ{sP_^RalRL9M=bR_9OPO6-)gzhS2xNM+>V-mU~@EJs8m-oV`I|DY8<9ONo2G- zLW=$PsbZ6;x7S}P^}-?jPh>M1AC0%qzQBC5lo^uT?^Y}OPukEp#4}+ZjI5k-%l$#P>DM%7h5I!9}Hh)duNpi^Gpt*3u1iya0S484B0$WDYakZ z2g1mkIa@UA=gJFfuNdtu-s9_X?6c{HPU$V+Zr-^R8#LvjfSU?T^$4L69$%iGpIpef z)fmjp^>i_A;zhS`a5F}S;-_;lRMh^euBfS`K~70cdy4ALBdh;Cy*4cs$9de0=N=dJ zlQtMNMPgV-E}@Gy@+RuqtHJ;q8giV!4J08cR8%x-LxvodHcX){k&TT;Cc8%jcU%RK zs!=6V`WE2yh3_?~x=D=h^xY zuqC187}+ZVgo@26X$9(fij6B>s_J@RWgLI4>UH(?z><^+1jGDdWoS)|n?5jp5Ol9s zO9;&Mo6^oL65BhsZGe|h+9!$HsjB=2s_IfQtYk~-Fj~gM!v_Z{l2%X1*$M1qp4|s` zueKH6(QpZ97&EEnPEKgYkJGUt8RrZ61MHa@BOOxYhSJLS)7x7-jZe$oebQwL1#@T= z04OxMNY`|SPy{Q|nDAGGeKUoalF~BsLX_z~(qe&;;robUOL&v%@2 zd%4xh+|il~tJJ#J*6Xihowv8?Hjj5qTTpf6^}Wp|yXdZyQ5>81V24BVBNcg`=Sq>vvr&Nd1QX2 zvEw%{ayiw-;_;gB4JVfF|8#l%<@ohuGWx|FJGA4(F5WYyQ_$HF6PMLhcd~X1j#zMd z$g`b%ZT02%g*8)DK~kehb1NTan*KO_08St@#Ep_HrFj3cV6}bzw?pGbY72!qav3iX8bbw;IylFG56ohbV)l=oSS{xS=;VaTgp`yU&fh7 z)N^~bqkDrU!Ri`o*0~%>O-Vc9JhssD#;{FIT&gxdxV_W04*Tj9H!)M1yp0U$q_*!e zIili{kK;|=))`^)ybiyqQOooeah=qw($D_qTGb{#u;2XbmFDBudU{TD_iX9NCHuX8 z_M?XDXpb!$pAJfugbc8cdvWA!=SP`4uA8)TZ`%C+e#aRhe$f~9#)LUXSodDBpmWBA zDlM;EZ(ndcyF+kY!*dz)>i+lXO6cnI+g;Rcjk~|NdpQ3@baL0hJFQHP+@Hbk9pE>- zha}B6di>6TJ7*_0`cvuXTN}^ynRV{Zi1mLlVqJ5WoExp?CY*`%-0rY{_T8xSIoqtq z+qd)0y0Oc$&fRs~l>j^2=h z%U3>G8-L$XRe0<(?$7A(@u7Q0Kk8qnW6mx9&&CS1-M0;1l-@Pf@>0DG{iggGy?J}K zo%gZ|t~P^vRJ8saZC2T+-Afze)7i$Er;fynjU8nDtJZh-39+$Va*tc~_Q0PNMrS|% z$W`x~)=^mZQ(NGHbf-@nhr7k&kWm|7Sn2 zzh}rrd4qaDtgcH8NRtuXkcSIqCo74rqWK zR>-gRZb=^7FZ)YY8m#x(ymeTxL!HJ4?shagC#f{w>_U^rwa1$a&t{xC+N;U!=lLP6 z6)p~OAz@$Y8H5}St7tU!%*hc41{a0J-B{4kt-!7K`u3Z4_cF+rCveBde7n@u%(bd% zQ1adX+7G|k$ll>peWUyKu}6<~s2si6N2@_r}3j0|jF8AD)p0oGY za$om7uT#pe4c`|>J^cM?rR|^Ng~M!JKEHjN6`hzB#J?-F9c1}++mJ7j{zYAKlxZH` zywRuk%0m-}#LCmA-TzrDyKjY#zv4gbI<)DX@VnV_l=umUIv>XLTw#0K&hzWxCwpJ7 zeEng?@mbTRR)4s>*6;(OR*xz~d~^NrE38{knDfj)-{Yru-9F!T_=%qHgWOx0 z`A4{i8wcY5#b+whJm;$|BSP$}#i@%OFSczmZVDfE#!IZ9iH`0&pCGNhf1mN70k`F=a`8r$v|as1`%J=MU%ph} zx4n3hqTBwHZyMEku+CTX*=e3z+%eOb6VoTD8aBO`GHNs$jx!(n>&=b4{DSFE;$Gf1{~rJJPXYJmi0_lFd~w{*o@eJ5#a}kS z%(W6DW4szZ2R2 zW!`Ulv#Xz46c=xu@ngfuq>Ec;23UNlU18n0?f+FDuy^W_FD^@rOc(X3HtL1n(xy9G zkGAJ;JbSh~WX-BwF)>a3N7di%EE;TKzPb7$htLCSTdzJ)Df5A1((g{(q~9~Ur`mBl zx~Ddu7n|QDsW9%(k*42Y^1TMD4J$u=Un5ZQxsrI_%K=pz#gUwmS5f?LF=OuYSLa>OEHs2<*SG-BZ7emszWZ&3al#J};T~o&BK7 z-J+D89o%o->@m1flkpeF)OH;fe(vyCb3?ao#}&;y(r;Zj5+B#+hS8+mN$qcX9yxNW zFr|L|q@fS*jqW~hvLsE#?_1x_`_0Fe>6?xYO$zDNyOBxiz*l`ens;gtRlVxjNpsb~ znS&d+q%R$5T*cMM!g^4CzD@eC%RBN+6O!D`A_gN)mXK7(KlGE$(S{e6zuMEeKDVk* zcA!LNW4S4|bxzn>7k`VT(W|=bKYrTA=|uefY5~VjoK5MF$FID1;Q7gy#qIgmqkhD0 zns>sj-i143-}?3rp7mkcM(^$IkAA!n6&LNa{Po+7TO5MgJy6<5UfaBRMa|nm32(eC zbEg%=d`w(C@MD(EjxHVqq(nNL61MDXN-ORy~uy|*AZPzdo3SSqfeOau>0;l z!Qlq;u6?o!T<-HPbNw-gXZIX)YVoOy-}lwpyjk|#d{VEDBexW)2lV>h-s;ZdrFL7s zi>?K_WH%cfIk0DF?V43q(g7#14R-rQ*5 zot&f}r;aVWJd%Ito%Z%jN_gf8odt!8)noFDg_CQeY8F~92PAsf`w#CXI>+?yw z^0p=zB}I*rB&6;PxU&6hfnDR<&PL->2i%$Y^61f{n+k{As?pHtM%vEV_Gt#eyXS9p zb~T-3m_Od|sOa(fNoS^?>T&3!UvmEP2`i8GSZ;eb%;e^xsY(BhdbD+HE$R*=(ETT_4R{37`39L*||xA#pf0Xl=H^ zej5%$KrLCi_M1I{k|iuE9?*b{6CptpS>SKYgj)T z_dfJPn~n$hwlfsp+)Y;XShOlC;reZUeQvjS+nX+dAr6jTJRdp@oo{S?Y~jsIo}2GZ z53~J||1PcL=w{ve9cwmz_>R6WA0-{!8uzJD)e{S>ogA`?4;_6reqtxHgJa}LN2BsD zt&4g;B{_kAxA3&xgwK0we0t&&*QoQam$^@-&L8GhuS!ADwd6(7=Z__?8~6Ro+vovN z{$s`z@#)IWw)ekI{b6#ecjAH(yXVc1d=`~{cJ0)dXI(|g;yMFHwQpzBa@m$k!#@w% ze{bpJF||g22(aDgQ&T)RFCgs5(kE37+AQrhdQYWpRR+y%YZK_wHb-rjT<}>PVQri7 z!D?!I=j3U3ANoI4-mY>WHYztdtmC7sZ$)GKKC>L-)#7B*WM1KMUVgCJ<)yDP!;Ec* z_s?83chSZgotLN9dOj)dcSc4*v)uk`3y%I;a;M*>-YtLC51c*juI<^*O7n|HcJFWS z%YD>%rSbXW)2w(TR0auplp=7w)P{^Vr6OG<3i@xb)A_3eJxz5IBh@zt39K@JX4 zZ{Fn@ZhP^1%ACdbGZXAxWUKk#vsxzHKJV3j`|236MQh8PC4IQSi{WN67sZ7)n$Yi{Q{4lG;ju@% zIz>mAf4_C)p#8qM^st1s?Ly+;F9{u)mGS5D+=lmZlM7O}WM(?v9O^UH%PcGC9)IZg zyz{So4X3>>^8R>z|MBHt6TMv5o9E9ylYMUJi6pO3WAVhyul@SfiiV`tOOCE%KY+|M)=bZPqJBED;Tp?7GwXysqz$+QevX=RQbjn6`w=?Vl1I zDsnC`TWe%@kH1~Gw9Di)Z_S+(FH_&z^?GKyQSs{ivcbMSp(j07E#jY?vufLOW6GCy zhXW@~i~h27&s&ErMZX^2u2Ey!Td#$0Q}(8h3t7^1nDdEm-%Ow1Kl}A~=)~{qP9ML} zsF{0l<9kcH{CT{0w!=d=`FYMZbY0EPCw(t(8~2~(s1LiEu2sk?c0J6u+4%i)*tN)I zH&ZV~J8wE> zt5D0l)~Op+x3BIS+CFMu{TcQd%`YYNR5grRouy9hSohMXu`epfHo52cz1m}PWn}#{ z%i`J+ivhdqw3%^mX;}3IJsssg0*|%ghdFP|dTTecFaPXTo1od#`h8e+&9C~Diyl9= ze7Bp|_{!~ZX`y?9@2;)zzd?o7+qZquqxfC^(UAUMyuB-=_ewJe%s%@i^xpH{uOoUH z%3k-jwDNQ~9v0`fZ)3N>t`D+%$pSV8jM_MSl-tVs>lbXS(y`ltSnI|kruK?5J(p=V z)7bgOBECa>y&kQ8eT0XR-Z^;fu?x2M{U*4%ENtd5rT)y5M=EqKe)V&hUG|@;XNp>6 z?f1PHR*;jIk(plbtn#+O{yQ$aybkOdKYB;N$A&-8@2_`ltvq(af<`CBsxcx=(EE zn>#N|tF$*Ur{9DlPtF_d*=IR;?%{g7V`AKQWo6yj9{kJ5V2pBKyOBN~^VjbkGS8uI zqK$8n=;j`iWtB6p=GS;$kFO#38#%VRP3ASfc-g)D@aXuX>)a2A$67r%{WM_PwFUWa zs)zOIbGP@;-#hHSPM_m)F4w7VJ!#{8Hal`=e%ZMo{K)`&r|#L+iw}F|jhNya)Q0=; zQ)Y8Q`LcN{XNTcEyZbtO@O6hfd)-*tmA8-Y{4r?Z#JgeR4S)A?+qu!=kDvHGSle~o$L}wb%rox24+*rI`q;;@z}kLO zuIW32;3w-6QwEF)v#a)Ts(VUGlL)igPv#hO`(3cQ_qg#Y5AJ&&cYb2Cmnm*mUyEgQLP$;sYeuUx|w9p$|S_@{9vPd+?3>eY}LHq)2gTip2L zQm#|=IX4Eq7}Sq*7rj3#o!Yu@ldKb+8}#0g?R2BP>52^lH@x4+Psp9RH_~zWET=cs z3PsIonp%k;4qiO)R?L!ggSAHn4_qE_xVg7ucFe$J57?G`xg1i zT9nr z8+wlDc2#rB?xo?VCqqv9?cX@nrt!zNb~a<@-kOqR95k%s?Gr(}M!w$}w`s`pBPo1v zalZq#W}42q*E6v)_sMyWd3{IoOK*ZF_@)f$f0Ap|bYFO;)ex`SieW{LODFmTIrzWY`0G;CPSrE}1GT09yXchI_CZcg@u|VP zCcJvnZGQdj4W1WtxOYc!XxFjH@hdl9y_WoDdIHZ!of$W|)AdKjsRbp;9@f`Zl5~bxuA8yhj%d!-BlLb5uM zK)q#a^{s=F7WUzN-ZeX57?Zm7`)aQ8yE_xNUFg21YuixC>JwagR9k|CS+*$0UClC|y)9rAz1BY2)_%@aUhD?e%5D zvbq=h9zJXu=hXk!1m|HJwtsk0^JIWW^z9>~JW}09&3Fy;8rUi;|V>U@xw;$k;OzvTIQJ*8n@{Xwx#W-;VWKNPqW#x zws5|zapygv%XiXjxYXHU{k@ir3XRPCaAw8*F%i$!_kMGJ$M!2Jd*T%x@@^*wgnoWJ z+CI<0yW^sdFZmg7(vM{BiHjdNdg7<%i)5n~1xvmsd=uSuioLGceJpPJ`{skry^{?0q8by~*C00oHvAo_O!Q{2y=hx#7(v_VF2k!`00y zPJTRjWI}wu$(_>7ZM(k7wcNV0XnKQL9?53M9!yxf^!et@y)n{mO}OsEycX=}vO&Gs zR<+OO<&0&6?}qKo>-Ri{&)M78qlfSF$ZK<}&A1qU_if+A*svp(Y7;w2M$_p0y%QVQ zW_<0?rf;%qr!U{H+)26G)tO%#I&<9F9zXM*t^HoJ!e`NdTIQ}!KZ0BItDLtews!j% zo9Aaoaq$6z#{0Zbb=|#b_kVUy0pXFuPB@-$o;BDl?$-LJwJ&a{5Zci9Oi1N}w)x(Q zfz<=OhSs=L>2aS+TaEAATSu%}{s5kJ#2P+!{l~3YC#9C-m$h6|V43XHcfS49vwT*U zAD25jp3fd!U^B5G`)QZh{Jo9|kJs%xZxU=Y`S{J)H!GcrE6647u2*w+sdfC`F>4|AgSw)a065RY5DM(@u7eBq5H$H+K&YNvxE2uj%0SJJ(dnir=%xsOrE!GxFST9qyNxc=1ip z>CiU59v1$NLt;9+FRi;JBH4L|%5r-59ws~5+4tzV<3YtHxrbMEdA_U5wFa)M*EA`N zGgZ4-uaAt}Vc+BOn1QQ$^f+y>j zpoZ^JYPHIm@he2;6`eK9SBN^=$i>=1EOt@s&lU;4E46X1Xsbw5r$_1P0+xwVv9OXV zz?VIA7Y1J9G+yDNtN4dn%T)gsVjvOAw8YT_g^NrzTUUsz8_LDyl&}dy^HzxJ8^|SM z&9@bz4wa>1Ij3p6Qq;4GM5a{BH8WO4|>3MKg- zep*atF~a;}r~rwa`JhCq#Nz?%2bG+lY;-5VSS?@bwn;!1Axp#mmWOTmtMlgKbNJFyHultw02NQ62{E&a>RT?SIK+@q9A2>E3oKeK2Vc#kYv zhTm&rHzHFgghIx$MN9B64CbWF2f^}6awIYiyr8jLEwbb#-~fs4hwvS=$#u_Gm_#O4 zinWY}fB)O4O3p3}{iIStIki+p=1?mYQVT8Hlzk9`@k?epyAl=yS!DS~p;Rc?i6xMC zmZ#7r6{=2!ztTlx4wa;=jV}>+iCm^o>2R|!0Bvdo!}SpIawbtqIEF7Ia-~AfPyu6! zv`KimTC5-wtL3ctVz83v4TVIlV2>NDB4H?qu_~bwR`@HW0&b^EIc!c#|I$X8SOprg z9hJ}sq>YFw#^R?3*?wpvV^y5uUq4=}Z!uV@U>OAbreGD3Qml|LJHc2rOKRvum6Ci9 zd|7txCC4rk^J>cdN|{P9EPCWp$|c;tRsUTy*n?@4K-h?;RKf}{M+}q02}RU;YFnaI zi?xk9=cG_#cg&8_5BgYtfilQHYilH&@J0Q85>6`C9b2NdVOzsFtJk4C}}q*g&>oD_~}Y* z8(&6#4Ax#Cz!;r2rG#ZnnFL2ncZUNdlcfw3fGwZ9n4d{3(UOD(>X z`!QI~S}~bK0c1)(sAjbz#&W{79{ox1gR`_vD$)NQ5Awt0lN~E40Ffxlk!^*toJkbS zB*GjjdQ1RI3j9Qt{;D|%T?{}8Ss)Ao;eMr5xBqU)uG^tta zf;M7?WN;p+Fu|S@F5={@)sVq}vEUHj6U>?~vt|_(7uknWM)w9&PWtIu_YylPC{~F^ zvq{vF2b^bAwoIa;fJLH`Q*l<|tl8OAO3HUCET8mKYfZnPZT~SmMP675fpTaohvqzF>z;<=PwPx04kzr>Qev+A?xLRE*kY&q*3RkgHNX1f3^UWet{5*3h1O4?_ zWpHwJU{wj>Vd^i2@!GyE}#U z7NFi@pmX%t3I9x()L$R*VdZ^ zidw@(i(2r&)5Hx!ERITmimGD7WT-f($`J=uIpP415Nj0}N@w$`a^yi(jy$OU%7gA$ zbR)z>po2YhsajVY{yMx;bvg2YhzL0e_#}j5)KnY8Dm@dIV6*eN!zl^0J55(~Sn52UdLS*?2x}NYdtQNrtu* zPPkttR}k(;SR9{cCs9%EmzP69g_x(@52HcI1?eQ*kBA5E9vmL`w7k zd~Ko!TLw{M;H^~NYb$!SwLitJrX$_WcEnpa1_`hkppa#jlgv9EOQ}P zN{okG$`R`(z-qmn2pf?h@4;>aYLhHl&6P&*{)KnoP!nea;H|`;(>+g_iui}}a)5~( zYKKgWw1qyU5#EtwbA((_66EZl>*)s(>SlK=S5d~4tLc#_kg;OJJE(gqB~6(Xgl9t4 zFyc>S(eO*j87q_oJYyeaAb(sbc$X{GWig+!HUuNd86)7SPeM>oDP@D?LWGgnc(_xV ziirUJG!!jYa>T03ksKhz1v+7MpPZ8rOe^Q8BO~V&CA830x=7!BPNJslsRB}9 zPhTY=mO`%5kI@?n5Cb4m(=7?aP!Q`NSJ6DKT*VRNAXg#x!p;xXOV+NYVOKeF&)Tv2 z#GqjMLJS?qOblg5BAs#=d3J#c28n7d5JZ6lc;G)1;a7;kLu6to9@0i(4-$_= z&BBG?3F|75j$}!wKn9AHErf-M*;Gg*gg+H94rDAUB}z=Ljs+58Idozb;V}ggXRLNo z2=O(R3c!u5#!?_Uq&J6Pfy$}*K)#IzPZbD3kVz0kVike{E*yLAFf00|PncJsmXibn zv>ibYK)ZA>VliYf0v2Vd08wMnjRMy2?~(koKnegx!bnKX(Mf=L*hvKRK-x&50is|m z6KZ@8h${2Yb!0R&GHK(8wFi(SrbPjRNH`9G81_t%V=poGHFXRuDi<^#4nQ%{cr6SJ zLE~^Rh&_haMi~z|EV3UIosfMa@2s_K-nwgoe@zF|IIKbmJHiqTX$nFNrCJkt5PPI` zO$r3W$w{Kvif{%8Fvm`X+ydQ?lIl+w7%f-nDqqlysuN^b$RvREWPvJ@JVg`$K#*M^ z{0?1qE>XTJ_-dphNBlDd{0_oFh&vHkK<rF zu1U&FiTni13+P6U1U?!OQYAuB?9l~xH5m*tj5xfP+vG5C~i?=(d?>G#Y22hRDw{(#0m-daV9KfID|ap zY;_+eA=RN+AWh+-iJrR>X;_xj94c5y8{GZUw!hVV04+4$2*-^o5Dt~UrGx*Lh$%Vb zT}T_PcR)oeu`fI}LJTY7s|53)LabC~%luLV_$a9XmsnDRe#ECmGEzX2g8lgyZ$v2> zacbcM5~o&)_*WSTOQ`?@!`cIYP~y`f!KC9Y{7rT!k(4Ex5J3vE6ZkXic_P?LR5gdn zKvws|aU~uu2mC=?T!ClUouD>{#3K*|B{^&k)oScU;42W2g~B_nsvfROey9byJLEuF zh66yN;)#lgQl(O=Q-mCyO4H$l$V$`hgs3iR0?4*N5<({_6>3g~szrvyAu&V-5y>IC z7uvW)_v&ITM1~23M?E3Yy_`_l%ubAMEcc;sme^bvQa!Ds#abMKFZ6>np~RIFy+Yuf zILVNGHK9AyBB82WNfQewWF&4H2S1)=drqz-A_{yDZVG!$;9pWn2Xjcd8a0dTV3oKmR#0a8ROQq@ zacTttdALMUW?0Iw7NW1DT9QM76?=A|J|Q&-O^ykcl=xd1%jy6g$ti#+hBT-EDqCTx z;zsca(T)H-L?RHGA`C1f#aJmpjt!gB+WLRS9w3A002SaDE63nf;v^!ON^CPM3A)W5?&C10Lve^wnX{?nvymSmBwVO zSQ{)yjO`!yt0kKE7l4UqsS&6{+i-~Znjwo0a zYW&H>fc-3QBb`bT0;+Pd7%C=n{k@!9;LD2<%s*bd}wSPyo!HCnAC* zErOJ2nVVm#*pcGXSI!##vZxBLCJGi+c*NhpMI-{eU@i$3R-@#SEE*|uLP694YL8Qw z2~o2{6em1866AufO{7E(q|fS2$QNC-PzI!P>{=!Sk|4e(?gtPBiz_`ueSzNyszgZz z(XXiUB3cA4DsG1AtOk6AUy-2p4e*C}XDA>dzNZ>WmyjBnLRN1=ApRbmE)!x7!dwVI z>5@ykKzh9qu>e{*phgy!6NHl*sDW#AsanE>P`BiRxRplE4z(9# zf%JwVARr(-OD(8YLP52dr!otvV~#{XHB?uqaSfH71W|ml5jCQlq#t}xZJRC=s$nMd zJL25QNMr=Ra<0buQYE&p_ zVHFqJWGZ*&oX|)-LA0T+flU1Gvd&*UkA8>%XolUug%+4XhV@WPRRTyr(^7{9ZKUcJ zZ3N7q4LXrs0RR}oQRr9VlL&0BGf6qLlq0>seh^V`I*FQ9_p9|RY4yE7?8!FnH?(;lM61uOQg^U){x`b7%C=#%T0EocehQDbo2wz zWBVaf%N{3c5sBcU7WA(V@y}RcH3Tc54T_0OLL&Is8>xxKSa=caSR?>-g-VcW48}C1 zqnw4==!f5_WBb8E&`C)0Tp&K16+|0Hsz%X>j5RxnQ2NidAxWdR6JaBWvk>wNw=vkU z|E__Rg)%XiRAHcvR9v8qRA!)!AZ29SNI^dU1sfnn+6LH^7(yI7n<54WBNNT;1o0C> z1(+FnOaK~WETSqVY$Iw3=ib4qL*{o7Qy^h#ESA7Aw2^yfC`5*n$9@|HG2|#!Wn`I*ok3Y2t{CCh%SM3(Oqv93lmdvZGoCMF5d=M|h zkTz8NlQ!IYX4?Rd$XMWBy|G&5geV0&7`HBon#CPrN`5s-UtxEMO_Ie>;0w-@@hpQt zd6M0se1(k~A|9%LH$t!%a2<#>#I0pQ8Pt`Rxr}9i3&nLr+aUs@xdu_iH8=LC1%=L1 z7cXiNTL){!h8qy|B{=}J;h_?SXn0JfM5X9TDFQqCM<{F@6e4^F;7U#vk#jN$4bS6y zD1+5mj8;l9mPn*jO781naOr)Ge`r>CE{sqMuTJPrqCG*FKe7=SxPiIS88BC+2?f{s!U*FH=7=}0MzEKwQ4)nmfPxMj@hAUK2s3L|t!H-dnk9%Te6 z#gPyN29JtZUR(*G=Z-2fR&fG!5?>DGU%LJnh$_shmhkME2zSiMj#0NpCPA2#)$Cv+ z;<11&39JB0DaA+sAOymYRK!qY*-g< zI22tH3KXP8m}pa!^F5CF9-JQ3l$Z0tvK5vAAC$$?529q4Fc)AySs*|Q?S}<2wX(>P zvMa;_QG7#~kiH**m!wFF5G;+1B}*;j-%9zYw0=Y2ed3m(wt_gjGCU?k7K88)*)grZ z7aU2JXLzg{7Moq6nrc0Oe&UA;uW=D(Rg){1cv2FV-^m=fOTg4`pd%xn0&|t4mW4aH zr6eqkqalw#79&L8*?tJ;{|hVpt=|ytgpzX-0;num5s@Xz2ObE4?m~40OI2-@kfB0b zAq>W%5llfmVZ?AW?ymvy$<=juKxO4vWx^t;8f#JsBBp$WI(sq+WPz{-pg!3M5(i`> zOyWR`GY}ynx&vN6n_5JKgj@tb8x#dg1(anI0iloaVl3)p$WBlhOa|kn6+#851TrzA z=(J5mq60{5{lz0XI76r(qJzn8dAxRsTjuPJRpfOOu(p^^j8K-I_zO4#SGY-rPdGY4 znR2u$!to^Nf*Xh=JT2tp$)b^)CGiUsN0F?Q9IA*_=W-;yS<4CdK+qN}3yB{fcvL#} zAI=c2`Rb8Ipp2T7YJuNKl@RzB0?Hf-()mOqJBQgDWNzvlD@ zz!zGPgS!hPR03>3oJ(9lB+*UeRS0+ms;8%l+G;IF=-OcfmPn)u=R)NTHMZmwR5aV7 zP?1_t;ijCPMbp}0+<7Gi8&_wjLO`hvtITowlyy*+$FdHVLi9VXD)I#7;=(L3hYB^y zni#$VLl8e6_h1PCz~x0^2oUP~J66XI;~s1|laP`=)GNUMVizMk^2xRdxnt7C#AyXP zjLLf=;=CkWERzcY!xo55Xt2L z;r$n4K7=qWs}P~mh^`Q>x3W*;;DZ!n3wK^w8-)-r{U9_KkrLo;a>OuirEO)}S-A5` z$O_y|+bG6HR)|Ujldu##7ra}*7GB~_2vkavRpY)F;RVz=ux1_wEyNxn&`tXRM-mF6 z9$&&dx-7?9=#HU3$YKz~C5xd&)p#Ti>RU7No8a(~0URj8k{5+QBs&ThkPVZ->mp^q z!i{ILOI%MZp{}l>LHLM02OJ=I?;maCmXYv|6k7<1Hp(Z$uWaZZtJcsUmrTwYckGB; zgA2fA99n9zg>qF^tk6b+R50j7S>Z+;d4mlggN9RZ(~#(KTzp}vB|vu;d!UV&WwZ%F zCGfsjlT*{kn7$*7&J2d; zVmS>&Cr&!rNQ4P(q_jr3*r;c*1SU`*F2T|mZHS;Si$NriRRXB+AXk{sM*L^A;mDcq zp%>4_FK~kfIa{V9-k@MrA^L&w*?u%DEMQkwBcTmHGol^)4{hKLIpl!Z4+7FMS_PFL z64rjAjl2|yHod~*i6O&BkM$2R>eQ)2ztPkEEs)a|8+8!%9XD>Gh474@CZVBGlNyj7 O9Ila-RrlUbM*jy?^HnJT delta 221362 zcmZs>V~}P|)FoQB)n(hZtuEWP?Wb(pwry8+8C|w*Ths5%+?eYoW0Ik zd+neu(&Yxqcqd2>CRSEP7S04u-2X2O$Zp97W}5-9^79iqyEvH|+QN8bUumq_k+Pxr z*45o2IykE{D4|7M)9xFRnk}MqLy|+0C_T{GaOW8vy#|t@ z{=wyT*%5rHqHv32SV)ta(E0N5$*70p=WFNo@Xf5nALjc~Bo9Z@Wp$|&kk2cNTSzlP z7jgmEWD;UI=6(!(v708bP5QJ| zIIC_Jd1nV37-e=_zuQ%Hnt=&(@#aKG7S=g^{Jqs%x4t+2v-90jDk&iZT++SVyfyM#B zoMj%bPmr@gWslCnKp!dw0ZM9;aQIOTTX^)S_JB#jIGl+&}^vtQlW zQ!j3{&p@R#92g9tc*{Ic8=Kye?Jyhf6@s0)?K)ScH<^)a0i&e)2_N}My_w*J69U3k ztCN!fH4rmiZtm%VqQg&lA!B7DD`fywh=+s$(bzAl5GgZ+2L#0fWMTC1T=1?=BRdy} z6O(R<#gBJDYldo9h-r=0M+P%k$K~c`D|y|K6%Bu*t@_KMV}s#V+5zs1WK@s+_($t9 z2VnI`n$E6uP3JO!w`TT4eWo+7@i7UH=I}6H%@&?NP$O~Gb;a!lxYW)cs}LZ#w}H~^ z(ls~^cgUA`6YHZZ7%JK3>voae`kQds18pEw^U@*PF^8!h`~!W4MFKlD1m^+2Hk;}J zUY&1Gb)+eWp#;c=|6Iw^D(VJO%Fx+KeYSv_P-2hecs9B=CHW6|d@|XDmE#>oD*nlD zE+Z_C%o#bymGW_!4%6S|kGX(R=VR`l+_(k&1dHgLAJ|LbOvInB%XZErAnV^7>hCZf z=#v~D#7cPaHH};w#$7IdzJf1P<77Wuj-IIc#z44)rQ}-tAYb33e6|AX`RmNz)6Cvy zyy)}C3Q^?2zXqfC9OQAY?}qqzGl_7ftN&Q*dTmnX`1pJA(c$HP82SKkC8V?!6G2jC zY$Keg+wu{N&^NhxgW?@Xz>NK!7#NV(djJ(L#wr%!6G(L&OlIK?bMK)ZI9n0yUS!3) zlOMG~#vGxk9+OxS{Vfa|_hj0=tOAcKHp5?`EL%=yFch^WtB+gS2pDT>uOIRn~*N@!cb#W(#p9<$n!L)kx! z2|K4UNb^M5_xS5m+LeE>`ysVj9Owehajlow2OvN+0?e~oI__Y z)Aehc{W?%0h53mRPNphyhr5Oz9p5>>pc5!kt%+9-odBS}Z8HukWO4gtaUl9Bg+|}# zuRK)nEL;*()R(>tYoL>3a8aDZxB~hyJH1Rt~sI3B{ zT`@WP6T2@i?wuLs48&zAijhA_R$<==i}d?FzyDU~?o(lu=yP6OS)L^xubJ?X`UPGE zNxm~rv%?6`C=Y4ms$H`Gfds(Zx+ywvk6;1aJX6#+G1#t4XRR`7oKb}f zkw%v{zgkI~bB3>Sbq8${`am z5=r&XnZ*r)uf6mB9kUvqh%_I9x|<9J1u+TD%kiu-n-;&tz(h~C`^PH}MRDPl&4dd% zR@!NK_~_<=Gj+#SN_G;L9$FVw-qbEBV+F(b*ppY0P{Cw6wARUkiNDqGGU$MyVrDn3 zd@4|_B#K0aq3%seuoU2Tc=*Vo&u{V!^7i+{1j(0ZOkUu~Ye7WcI;<4czK1}K7A3!z z#H|P&a){5deH8KKuLby)MTvd)_EUL#EdOfY78{6%z#^hCozz0&@L=?->Lihh1`|6* zJ>^gl8Zjj`RA3HbO{F0hn*1NXY;;^R)AYI~YP0l%KY{QgGc*8qQ8Kk?qc2&%Oqb1Q z<)~ulB8!5wBUa7o@x-aX53ArDVp�xyt~`5~;tIg+9$_AMd&dg$sk9Bo+rs_VevU z@~UIgT$KLUAjJ35csLt&=$6#w3iS%BPYGq#x-yY8JgXz4s?~v!{wd&H>~yfg{7v4H zBAMBJV^REdgv0<#zS9B5;56ss>}Lf~2p1dUv&{1f2$o`@As>ai=-c0$Gv{FQ3da1E z!=tO^M0DfWc2i-A#)s@6=8wRZ9>U24yrgz?;#j3g4D*E8>G5C}pl(E$ik~`8a@gmG zvFi^0H=)3oq2i%2}QnD$ANH|ckc(zF~S8^t1Aks4&FGzT?}tRs`u zO`DkZ#_59|nmo{IBRtd{po-X`>LVMR6^wd*U>Qg8!2r;ItGuhD+Zt?F$?|#8kY8g~U7(iKqfrJuhbPvmnDB_EF)0zteJLq?EF{!V z8ycEP@lg&8o`+6UIMDO-6!&AGOl!5A4E}`w?yski9lpu4G6$+KP-+1ptNB52vcjNI zSFRGf20l9!>o?9KRQ4Q%92r#$JUiLMktqEfAwX^@-HXezyLaqp*fRZKpdB8vcj+iN z6i-ZqkM(en_tNbgVYE!wRmV?1zK)xCw(E=&KE!#|*ke!dn6=;DzuK!3I72xPRE@A| zeg=#g-H(H?%1VWB;cpv=CTajvnoq&(dbbq^ZXHw^z$S&)e%3nji*((yWzz{!cF0|4oMV z{W7-Y?aO8#s-X&v7r@5Dn=U0@K9T`t!Md%I$Na|(!4^bbiW2#HOWKe0{*15`&M=9h zO5xL|j+OV~6-;bd5-*(4qr9)_kkFD;$32clw?qzAIW++ivp5oiRDltWO=Nq?ge7R& zan9W)nkAz2yxzKLjS-MakmJo)7}oSldS< zQs+i1)^v2Wipt5YyK5fE*-rn9zQUJ$mTe!0JNogGs= zUw_A)?M+_;`ajiyod=l-(Ymb#c6!{(lF&8XKQMHf120r-V>bHo${BIF@}MWK1b(-L z-`|I9{IEOvn+RvOwg0Sb5oZFXLH?t|3gDet;P@!YJoW{Ygc{*BCAA>vAy7D@T5h6l zmzbsvOAZ3k{lH$;0QSBdiA^EJCZ%_lY1ndYb-viHF~ z?#ySC&4Ma#mC~-xp4$z0xCC7JAAbhkaLqw{R`d2|=$hYvY%wUHIsrm$(jX)cN?LUlj=K<=7x^HG>J;Q3OB z1my0*v{E!0ax`K~Vp)n+o|NiUp8x%j)xW){2fAuaUT{5Hfc26{^97mMJG4#>pEBch zzsBg>{{2D@VHKca6%tA6j%L0dgPgmx`{-^R-I>m{=IiGHS;SG&yySmbP=;#dF3(?U z5nf15(k{|nT=iUCbKO_AqV2q0wCfouF}*=l2#l3E&c#JmUr;3UjQlO6v=~OKLCy&= z^r(hVcS`~wg+QL)SgY_;HwH{q3+z-opE_Yqe3S9;0#?|l_6Rj2ky+1MaoxY>QDUN* zgk;;tyJMmOcVp?84(o%ClMNChCML2ZU}%Z-=dsaeW9jCEo5HL35F?lN7KsOLGGC>= zaQwa&?uP3Wt=82~XV!lawpuSfuu`2|BpWEvlv|)y9P#-QwDJ@#N=)fvoQFH%DVE_k z5u@RuQ_((s5V<1EN~nK3_Tb=;lp&Il7@@@a6Df584vvbyrTGt$Lyp{7ztdU|p!j+B zjUu7m#=A?8JIVKuC0HQR2|DwX{O!4>cR()gPJvJf)Y;1`@No@zx%)}yCm=>$yQ1O6 zdFjU0*vpaNW(Ofiwr6aRK9$#Y13zfu#<;!G^?_AamI0z25LdoAwRtBUk@u$>LB%4;)TgHI#6@J5X)_E?#zbBh)W5%D+%)q6+s{1j&DQtc zD(k%xWN0Bi{o;C>@zMnRmt}4LSTO_PR`+_F?e2dBospI6e-L!_H7imMG~X5VQ%K?q zJFR}qk*g41xM2~I;~tg+qE+aFPXRDnGF8_UU9jpBYK`?rn{Pm>DSAOG}ItI{+8JrUZ zmbLCX7f{J0UK}S0_mkFN2D=+Twr0Fc&jBmzArc*=%!C&!JRM@>uIS~*gs*M%u9A;r zEFMtC76pYP`V)#A^MEgLaX8I+;Q%3u8H9|2D@+_cH;g$Hp8fzXMNZ~C7`@(F7|+rV z)!8LlkiH)ej2prf)9$~*sR+UhU#88 zI4Se?Ie<2RPF3K66Va9@9OtBA%A17O znZyv?jb#UZ^?W6fz4^+;>oc z6~A8)HmY#GT2m$X%k=8SeGFxQv^GF!<$4g-$b|EOFZ&$}>Hzz$09q;d=9%D9Wt{T0 zKIs`|As^;rgJ*@u$X@vJ=4xgUSm!AHNB0ab-VwpyLj7ag0$EZCB1?~YIjcE`<7Nye z!D`#wwkBov4j+Jl<#jNQ9I9^3@_=%Te{T&3J5a^8F4mWVnsQ>hqi+AUL_MBM-SM~5 zg;J*`Qk5^auXdJ6XH+o8MkyS_Od*0TSaX_Ns|q6v2zOwFrG!V{a=*Q?(Y7fZ#1KY)J$PSkH9xsP=`K;b}Je1r%<76bgBb!+gz+@jil5YaYuEjto96PLw_ zNymePozqxwXEIo_H3?_71TLzZ`UIcM1skh=J^XQass7RJ!CZmo-`?=MeK(=MUgQ5- z;S+S3A-}o2*g2l#O=sAmZE{ZSHW|aO;Qbi-Hl9FBqC=SjY@FQZ1sxj0&|(M$O5Ref zLj4o*J?Ohr*~XRPG%Wme7^;QbcQdtc%G5z8%wzt66_+v0Lg5MLOJdkyzbp#FsVHtQ zE7nnzXX2gZT1IB{9!;g}xs=OXzoaSTASPJP;)6#|yjb5aRTHZE0!02r&A# zG|cO2YwaR+ML3D6mNXhEZyR^ML^dbVTy#v9#J#YWeZ2(sfS z+O5wi)?cB=6K!~4xDax&TO;81!$THYd%SZ!R&QS$dZ5))+GzltWSuvvBkI*(vQ{i6-YU7p>++E zNq~O@_{3-Gq~EKUj1j?d8sb2a20FSKYy^76rv9oeY1N-K_xN(fhEbTY7ZN9aWMe?n z>5b0juitzv=W&op-%Inbe=d-I7b1 zf9uzbFyS)>rz9?QqLtAvMJ+#~2&7JcxL8Robcnq^a~rHN_@k}G?5a>!Knn8*lKHi# z@U*is$d4{PX|b9Rm5`gZe}{5>ZHdNBxji1uMAc-U+yOCRwZ$T8N!A_gGH0Oxl~E6R z#g-jhx-NHBn{+Zam)ESyyjY&8X z6$v(JtJmX~#GB@nzP^;&Wv7x)YJv#rJ}MtFD=PKM>T6V0bk(Lz#loZ1dD81T)*|eA zelm+_-OgcN_&BbmG7H{q*EmOj*Vt;cu0y4tStd$M1X-$lo3a$nB+)wpg8 zq+}LH@pRiXs0Dt^RG)Dk8SGbe>~V|O`bp^MvX+GJ(Xr^4x?Mt>?_nxv8xmF*-pT%U z8%ls14Hbrc=e>Ru6x!cQ(per__qQ|n(FVbSDN(!WJzwr#-Au>_gKtQ%vIpenw%M!y z@DP0;7#W}|Px6mA<>~JU{GI%ITtyMq5*GB;sHi4xxjCa(1+Pi{22|X8gf=9t1`6hN z@`9as`OJQC@;`%V>_49TE%<-l68J_{$br^eRVpy-+eP|Z%2K(on;jY zJ`F7J{^s_((62-h=t{2u{&YX@eC5qpeA z8ad2_R`gXr^D7EQJ;~eULx{6@z!+PUuq58-U~G3ZVRC64$Kz247YH=YQmB+TkuM zz3a_;)o=TgaOx+8QGyy&xXAtJB#p=2Mkm9yhh|(1w!==@e)D=mP;+nWja0$zg;j@m zqKu~P!+96E5ZV#O@ujOvlr@Vy+yD^GAAJ#QR|<`oP|>`R{)=!GQ(Ar+Joy(`xj&nP zs2fx?^GC(OCT(2O+x*NLf1u^j$e`4!SugzRT2ELw`lZf4{pq#u(puJIon4L0EAA6}t#z54{n1PpqoO0vv4-cmipfKfPrmYd z7um4nO(dPDG|~Cy8P3&f@A=At!9T zC%`Cb=Mv0QT}Vh!&b`IoxB}{aopc5_rpDu4C_)#_km+bq{by?+V7VBXZ8MZD2Onea z=nU0hHMZ4hhWi*z+d5B&iQ7(hPV=~$iEc4ou}1R&S0Wai;;=Ol*%WCYl0_rYN=GP3 zL?bK;jkQhl@)GCX5JI8Ub1;Ap`hfJ*&@5g`H|d+-b#ED0x?Xqx25`Gsm0$`6EpN5k zxwAj|FbRcgENyZ38qKC*I#hRrx7q3k^O<8Ch!Sy?>UbOHgcjgWSs181Ab8KTpU?)M z$?`S)miy!58;hwR-y3t_a#GdUamINeCF7M)4{BLK0vcoJIqHK&pqSw`VPv*Y(--Zr z{Oo>Bcs?HU1~re~3;;Fn`LYNw6ZP(UMz;l+M6lDSNZ&0DKU!Xhx_<*B?M?> z*i7PEM*eILT6unK&hg%F)kBEX%PZmDOzL@Zs~>bY`R6M_Ycqg|0naGlT}x%f2j;P_ z!3eJx=lcZXJIX_dS@O?ERr5$txZfz1K4kc*3?gP()aLA`_`wj2C?cMn3LKN{6K3QkKL4K3PBb>FrbF8U7b|GBG zJ3q;{#PAYa81E+!)h#Ng>DSh^=hsf~4PI7E+t60`2wVmXU}9zdpNdUW#vX?QsrROC zmwyr0S#K-nyc*`Dvd@7%tby?``L z;uAO+iYze3x-YBm%zLzgaWtW+w$Ir$N+K^K&{V#rw10+5uw?pheTitYu#Nc3!heQ} zB>Mf#rhG6HV(*bqV?R=pP5R$=r24I#3e6i{w`eHkX5qjX$zZCrWF;Fe3}2!9)JiVH zz0U4P;cXC-^b}H<6524mH>7{qll~8T;#LH9FwM7nx;i^@>3bDeIRNr)1a$zg zsUJ3jXN3_IF#GkLS%RtWLu^g;EcSK-=-RGJoTfK!Au&!ye$eDKUb!^D%-n~&*~3Zj z069@V?fx-`^I5i}CQv=m8|E^2FFouwd9a(F@YZg1@TwBFoqs3MdMuNAgrFN1Pv+U9 zlO97|(5oB%g-`t;9##b88p0D^ea^Udmd>bKD~0y1-(G!dScNln)3{gKDbyNd>Z5C> zjfq!6S!gToltyc`J7zy%dTN&wr^{;6;s}%GcFP)^obKGsM&gl+zTmH>W?WX$kQ3>r z;8@bQiu%#Kb5{l}a)KoQ_V`kcpYPHi-fjS*KYvFICm-C7(G=Nv_waVg$&|ySX_4!0 z&A~OMVW$0Pd!@s4_PN81k*glq$L3S{4XwBFdhhQQDB%Tw4@j|ZVI{{$y&@U! z#=Jr#rFyF4yQfj^sUyiFAvCkW9UAZmfB=qD8p1m2_9?h63OBbffFf_2F#>BM1)(-XbKfr`#kDvZg9x|+r zF7q_SH5CDjbAE>^k{?iBBz;Vg!bjGuicKbX+v~*e;jn2zv6HW?>7r>#6^R)!JvE$O zk2LpN4s)*WLRknLjyO1^!&}${Y6S3KXN$wJ88M}X8fF8?d4^djF~U+A-5}z%L((Bo zx3Pj>tFh2Q;|_eYqlUV%N$$874K$op4y^qlBWh@Lm#kVJ4A5B@MO>Ww{G#1Qo-~$} zgA$eaeacD~jAVmQ;B2h(y2_?NLbLas)En_`ga|A!m8lg+jcO|xhP4;#Da{cN0Bqhf z=TZuwOXL9WRx=(3Z-t-@a_`vNnRa89r$s`q>D-jQM80x%C+p`+YGzWo9@RehTPO?@%ATGB#28-~q_2j8HY_8ZJ?ITO#fY zF844Rre|ZL;sOhy5GNHbIp%pn2;F+x4n7;)&s2b7D!Le3JPl+~j^uKt)jUv?zwMuN z5|sPjS;}az7K~Z5JWm*HOatxAloY`8{>xo97a6_kFt~g{*`jx3w`}|m2rrcGL?Z4M z=*g_f5JWiE9(9?yE7b8YQQCysYuO7HKkctxbAMJ0M=jCAiB*QJK1&zjmSK>{8lG@u zl2ifaITac`N~^+C6A&r=rccrV#oO06f3Bo-iL6x%bXo-M5AQOty`Ih4nW_U_dXv|d zv?@HSg&aGQ&vL%k!@!mWbr`4fXyV`?;TawzPVltMLxMt6h>aHHW&!}{W!4$={A+j| zR7>i)Ty;sKZE76)uUo%ar|xEMTX*s|7VPOKR&)HS3Jivw-C@e^BDx&o1^9%2&X92% zrsI(v&o1&)i#DboE#FzcV7cL@9+Q|rP}^|cfm471EKDr_qtd4F|E%!8#yM4_i~%0D zVf@ zdz1YKYmXndp0@}4UpO3ex%gpK9GCb%*oa6y?utF$@2;<$-8j8~=&q@49wn)GG^)I> z%WuqkjHF3i#jUc>S&>Dgm_J0}5$WR2!0F*s6{x$z*}~Ooh(k_#$g0)i&)a-(vP=y8 zM`9po(V866U>G1viy1iS99qyu(#Xjv)G6sofyqkMWUH$7D4Yj;b>5ikNKan9vM)q{wfo5|H z>TYNx1fe^T);LT~Pf1<9yI-TFp# z6jT&y+(-k#gaaRwbkIwGNOV_7q?(Hj+JQK{9)&hZyj*)A7dEdYx9iPSrRv3U9WlSr zsOYYIwX_GmA*4s>o~8j@9ys}Fz|lI+IgRz2oH6eeYzs$ny?Gibq;FjLH*Fm3a?oxJ zP&XZj+#o<>kk$=6a2V@7MU`$!^mt|E&JkC-<7eWOzV&$Bw~fF*V{NI=c;1d951(UA zI?P7Q#bm=pEcYQrNsW&r??r8Kb**HA2yp}?ELIhDLlofLZ=b&shdiaBe7vB%vr4vu;U>(~ z{;)}N*6eJmh<6e;K8Ce!Qm+7Sc7I@hf2(Eo6+ABkJr56U6P-*?-C~dBFdoY&+2EPj z1=6FqJa_gn-rQM%T;A?&9JyoL(`$+&qJhZS38Sp*;tbv*CW^K_o@8xbn053%TN$n~ zq70xE9-CcmKR-+!!)96T8uZA06zWE=|jnQ^H&J!}r zO9L|gKv7NagVL+D#RD-YrZ@C!FK4;r!W%$D0@MJ@vQar|bU2@xxPR}j7(%KU&~3vn zIOF2n`275K1j%GGqdT(f*iA)AK44`Xq0<{4r04VQ;|rciCMX8A)_V0e71wMFIfQUM zPbHcDt$PbJ&I`s1 zQ#-++_8Jj}l-L6!FRmQ>!o=Pk(Vw-fQ^&r?2|_8Lq`N@}hdBFRkz3r#Guge~;PXDc zyfb-|*O_)!&vup&(md50ay!kzN#Xz=@+@(l1bdvTa{W&{8o+EhfT*Z_1vM>NYjdG% z#<`Ay{=wkrqUoLUrE{MdiQdR-h2#3E)AYFth_fipxek&UX4NB3E7;}w!6^b^wugTr z&@{5D`g-%EV}(w$B-(M7uzS@vx9h=so;fK86Nv%7ec|#c2Ka9NFv|iJX^#`dF729h zN^7KjqBY7z>TElu2es}ehd!gVAVFY$|DA-+3uA2Op5$#!NcpX21Mw!*eQ0NOKB2K? z0Hh4KP3;+&9~gk_{ZZHP(fqCduX}HxJCiw<$%Dra(9u>GqpMkUMM;Zfca%vV(VixR$iP`>^L6GLP$@BDB>Re)lAonLP?F(@3k?IITgF9nz<#B(0;mDuG zQhpREw?IoT-)?5MhU?xG{{=Esp^@~!7>5<7+^w+8x5#OJX|zV0S`RU!{Ag#5%hH6` zC-Z@et&flR9{TJXWHC;_j&Q%o)jZC74ea3X@VTPOdD&fmoG>4in*s3`QIi47!c8g1 zv`g~icLv}fnx<)G=CDb{wth{$+R*RoZ-((fYz%D#ED#W9(AaP+st10&95wncMHJz4 z1rtk&!TlL8M~WT^;3H9BE^u|Rg*jDhoSrIafZoAX`tMjrS>%FotR(wy1)zJGU6sr$ zAwMtTzC+kI)^{3DX#Y)BKF?pDHjC)U?+Asbk?R0}4K@hSoSRzNLz=~CUICt3m{eXwG_hvs^oxl@Cs(pqHwLZXe{L3rJ-=CjleA@HG04e1dAw4!LwL zaY$tM_9DxXT+=UYUIpYOZ_gO7XgQ!q&EvFYC}?@Q!ZK~Jy=we31cvK``BO&&tF3ft z6Bi(+?NnWl#Oh7@@s>b~S1 zUit2)uvP_>y@KPp<7UMv!svc#80ifWn3HsZB?4hHaD}Y~eFQ06WqsT99Xq!;*bJ(K zfup8sf&pMW-w{|3qsh!EczS|^D5V*EPNDy1#wC*G**tF<&5WKd3#c&y5 z0Ls?nPT0pv*AMD(UnZmZe}&!l=Z7mA_g+nw3%eciU-*d^1;Zm(JMf%LxSa}6|EzR` zw(W;DhRyGl0Adr|R!IRZ}+HK5ui!h_G3fdfcLyw&L(HVJzDS{8e z39J3E!4K_OM6V??%?OSZ)e`CpC=KRizd3@F_6G}JK7bo3)CHukXx;hy z2uAF#{yMv5l!p3xF40ZK#2$qnO3GcpbIpLOi_qt4aH@WkxDz*cH(ul(Zja*vj98V>GOUgNZE*%q*MS2@&QO^~#Pk1s9bPc){)haNvEr5j=aH z0(Boh6nlwN!;){b9LC;gk~lCm6eHtVovn%-R}gJkO&TQf^I-2Bw=^(-#H8ZIA$Xi zo`9dSC|Fx={C1@|wP;8}ip?R`#dK}vl+*~Is_}g2uGgj|O(eW$Zez4TajVKFL)wLY zd&>b%R-Hp}wHf+)=R`I`uPtVkEASy&%2(|;hkgxit3AMOv{I)69Wh-8Xy(LKN7Al9 z##C9ZFciA7snuAG^?R~`F0Z5T3*3xXs!Ri)22-~d@HAR=${LPZ&;H6CTsAg|r9>Mz z@F=NJ`|$g|PJLx+vKEl|l;fDaYw{rRkQnv2^L4+xI5^2G@9k|ipMFHM$UGDK-j}s! z(hndxs-w!GwX&VB(6V&|&}eS1Z-QaN)e@_>j^G zQsK=~tJ5+_6TER8y|(kDt45)_lPPC19MD&}#V2iu2!>hDL;#Ey^n7N3*p-OvdG%G1 zR*wxqT1sU4rsjt9(!G09S-QUG62#)GZGBn#jtw4;0?8#zFS4@(FMB@3(C=4qS^6hr zlkP6IUfV&A`(ZTl!XK;Ngj0@voGJpe{Cj~%yhpE+bWpRSEUPCrpQ2+A&9_o3rdRRS za$+{m*8ATFZR!IYR`+KK_SlB%w=tP$o`+cwL+#K?$E03|StD)#PM~vx->x`hnC94; zA8M-e$FDb;V;0T@p8zbQyovai0w_0c!Z?Pq_T;HJD02R9y8mmlPou8@!)~iv1J(vk z6GQ@mOZ!*^#sg*MVr;Vk0TBTPL@Krc5VB@3;sW3LFs6_vEkMjweZQRQVku-yYg%0$ z2UK+2nK-OIZ2gBF@@+^dTYT|rV+!Q|jePjaK@#wT&L51o}&_aTDpkQq+I$ zuP_@W0~?KTV*Ps>JRZY?k7a6{Bwl1Fv@y3M@8Zl6Nqg2f(_PD>RQwZAxMtQ3-=x{I zG%z(~#;XZB3qCnVZ+*fz17Z6+AJxa6&~ky*a`rKfd1=^bt^N|80MmcNW|uTt`}@I) zOD9)}nIYKM=mdP;Zx1lq`p`E- zCN{1JZB}|Ergk*RG1oDGbvh#EmIBK;6X!<#jei*FK__*Rd&j=9wtSoJkQ=m3+J30xoXdu)dy*33!8yEAZ4`uOmtc>?WiSdK5tUuB4k^a8nwUUv#q$q4W zK&M-IKTt@Op2_+lBW<*uPrIyNL81Rm)PuWb7FCXHuRJ~u1)mc@k$qDNViq)f7`N^r zw6BfgMkjT>1~ld+7cnVWgfsgcM9^^+EJR3KDB>>4m2fo)`;zjSO2%cj3}QQugcBNS3b>sU4~Hq zYy#)TQ*n~UwC@z4dFmmKJL~JGhHSRA3|?9$t3gnH{)j6mpYrrxk7cr;80y<8bnBe9 z4t6Ilx>)OOxzQo0{c9f|I*5ZiQ7hn>St$tLv(WJ@-BB8Z`)CWI^p{_p{ahfsO;4Tf z#UsaKdP}^R;xd)L%tS?umh!yNZ|;C+jfTggi1H_k1m06Xf;aWwZ#K1Hd^+Zc5eEg_ zY1@g-mT7}H#>PWFMmKhF_-^QJeWD~;e# zX#rkG{o&DN%&%CZWS0qPZQLpE+mB*!OUD5#?+;rD{HuHssm4a&US;DA-lx$Ua9J9D z;3Gd1ex0}gxfc!0Hh3PINITV+R|d6~7R{(Dn}*ec%5t*w7oQBR#|W=s2*HK2{C(}Z z;PO#}B^-^pXL_DL87DO7$b?|aW}myt*&}j^6%zhOxT?Fnq&!ii(n+RiRCSr0etb8% z>wgdHq*6NA-Kt=j9i?L1J4$=lI94z{VTnud6H?P`s$fQ*HZM)}7s^N5mnqkiP;E2K z-^p2RW&mPVX^`xbL78HI6PmAB4+Oqq(a2*H0!= zXi|K|lo6>0NmLR+4aaE`FDio@!<0d6xQq0}Il_P}*mFaVxjkI$^*gk)SS58+p$?~2qiHj5VZ5$yd&Lyyk zex;!>8Z`S!WaEo)V2u!;hmYU)jCy}UeUkFutL=6@LAQpokQ)~{8?S512 z_Wd{x+qk(2M!DJE+T3!p_j45A{Mzz;-D{$UCLdYc z0@PO}wJuv}vi-6ZkT6qPZgtPx*O*FaYMXj=3;4wnqwM+ng5PV#k~xGN$-q=Wnu?DE zJ~?IG(*ZrC=(Qz9aidsuJ!MvDoKKAz+Pgqb^n$ZmbPHGCTxlaD@rBaX11}~OuzR3r zAwapb;UrOzh@)y%0H#oRhtkcKZBJr5o9&;P?oY3A<^@HqwJl#0-(sBY2HJ-wc@fCm ziR8!P=V;IcjFseAo7wJ`-ux!xE8}M4TaHw%LS%vSf;KOO7b8Ixn707Iz9eik9 zE!9Pa-K1j7K4HT(C3N5u${9CI_1my{K`s<8U+I(=!UaFhH5EEPex8e?{RWZ={trGb zDlJSG*x;_@ak!(B#+7X%V1UOSAp{a8wTD9ql5b(d7M{S+KoO7dR=?mYUxmd~P{>76 zXz&`YM@Tgj2qeFsCoo0&COk7eUy#U=RY)s63R}SqWKRkxWNuEIi}eYc5FSmE0&m2B z-0;81o2>tRytr@%vcSgzPiYtp!rHb}L8c()gbw5^S!=0kz8XLPV&iz7j{yUz9azMf z&$ydglKCp>_>v5)Q^l*1N@b~*?4PeEn&*g`@A!7$>X2P>3~vfPNnBO$&t*$lrKqM^ zg0oz`hN%o^8q{xHVe@Q5Q^@gr0oM_zpe1~BgFDD3412dW+@HC0bbK#3zVzG43G9aX zpW>vjjZ`jwJ_C3PXvxs4s3fznwQ19u!*^r@(<%2s)O7Y3M@KRHdIGnyv^-9eixj~b z_9<-u$L3HT3K=&0Su=*sRr~6pO;-zc1Gi^0uHT~(2W(~D;xZlngADikqjOBVUK$q3P6(wxwGLsvD+{t5|43Ias?>U0suK;dh`yhY-1nPitm zeQUw+$h=+(GAU!eq494R_bYPRP>IrtSGxpyd#>96&!vL&82MHz+BYeRLZ~G(4#<7g zbePKIqD`<0TVf^H5!(f(G2)ia?Gv!!>p0$WTf$qXy$hvENEqcnXgMpruw?_yAG`cL3{z5m>W-1^dGgShZ=B0{ZmYK2??OS75N z?~*}?p$k$mX0L^heq-I)4!(>GDRS1`iBTKt2M&S8o_H^l{22|}*tXS`VjcT4Cn^W@ zOy)lAF6XCkfm;{M*RR_*g~B@`dCD?GLsIC3yAE)$6>h=E1I1m}f>w5Voibg0bxz&n znytRTvK)&4MXlLdq!P}sG1o{orJ>%WHtT^mlBr+xK4ldnf+JznzU;JI)ZQ1G7ro~( zjSDX%;l=)N%-JJeLsk%x-BI6K@Ri9c*bqS<4bk2u5W%5_Jt1F=*dDKx5o*+_)~^z4M&WgT-foNCpW~_Scrg#d7>Sz^&p* zP|F#3hpllgm>)qTsLna$mlo0Zu*k+!8v$(g0{LpQi_omR+IY?6zP5gpuN0kyHqcD2 z_pGbs$)l4P?NVGP@GL$zy1_7D5z$8%4ci=U(wW}w3X_GU?aqOUlM3qJ>u9v5E=qCN z1uxtUFW*0zMyyyqB%NJ2`>4&Z5sZMt#`dzkWw-gP^KNM&aw<{|f)0`lWiS6-@&^p8 zKxZpUM5E7vTZ}d8*E>axYH~hNcb*-Obgn5RMkHoWW_pO`I&0_O#b8=4T-2z~;p)es zmyPgAbR$5bVzFP?m~`6IsoMo|-OQTd0r=JzjW?PY_j5kUp6pl_Q@B1 z@?>%Ft2G)@KC0>Qe6B5NXj-rMlmVZgh!i-xWZq2bgdyx3ZTwixOo7gg0#0(_OxGED z3+sRCHhUl6edI1#;cYH*ehKojVoY^*OpoivYOk)uDIe4@$r&~rQ_bYah#wf2L-76B zW&|ZpynQyoX_KZr(ENh^Queq|N}BLIpO8pVsf|vSraq})HBnXSh_t7Wp$42(coUOV z=n%zBupd_}^cw#gH--Bcmif2JS@qw981@mNVpaoL#U{}K@1A_50`gg+%C#Up(Ya0;QN~CVZR{MK?BqZg+bWbzvTWh`DSsv#X=9X^7?7(>$`oG|8zPtMKKk#hza zo$aRQ|IG>I(k^Hk^=A>Kl{9t)hP7t4K>L5QZ&O(ZkMAm$2Xf77W_S7jd;eP6|F)YV zKopQ{+Vsm`7>T(eNMon3-qgXwv9&yiUHnL82VCRM)3h`@(%IrZtSZakxKD_b8y=kt zv6jgNFR=EM#BAUT=nIUmffEjgI5y*T+5J1gn(kmCCFaz9eu$Ig%fZhM^!SF3kpki7 zS9H(iuj=z3VTv;J2vrmn1@W{%HUhi6$=R_g*C)9Ci_f}6%e=;f3|MgMj)Z3(tOeWx zUfhke)rdExy^Wrku!9rxqm%~bJmuKiW=OWxYedAYvTNlRg1gZ(rT-r?%kh86EC?G{ znj7szkQ{Q%=*X#V(oS^{wC%?~`?9c55Bpa{K z*J96`|M^1Rmw(Gh`Dyg~`^`1r<=Xf~;s;|66FfFiZblgYqwHNjO`oV7ZjSqj>u2=z zRQOSH!s=dhTdXcn94Pn@%~Cd;YWV!DfaYMS7)AwgyF3hm=s0ZljmT1l{kTO47C-qf7uiOivr63Puv(kbcjt6M~B? zq^ZoI!r{}AzygERqqIi$DyQ}k7&)YP(>%-6W^T~yJz*`s0R7A?0MUeW_O&!7F z*(9;1`b&$$npFEWv;89A>m~<}Hd~b+htl<@#M>IK*!}#wFUNH~Kcsu`15nX6($3i( z=k>O3*Gn$YEsh5*@^oV8Vc!hv$h6l6v_wsM!v)p1b%@Kl^9Xi;SIcw+70lan`K$5K>O_2>D%+3)RX zK|0<5gVY-RwS`nOTWlOhBv~_MJSoJeRR4AziOk<>{D2^AuOlzMaT6Zsecbbs+qn$L z^=8!F^U^9?oumYdYB(Q{P*LdJPt*XS*i#8&5fmR-E-KT1ZtM1jl$gpA2US&NM(~Ss z&kHP)q)_2%5CImD4m3*|h&<3<@A<#j`sUzDy0zcfwlPU2wry)-+qSV|+fF97ZQHhO zJ2N-$Ip@}QPu;J2|FL%MUEN(>UF&()`l-ZKJ4!KH#Ji}#6D8o_Xnh=M5F&Fm7I zq>B)nlM?;RoKhoE4$Q{ru-X72(rmFnT#61l!HV)cEecZ2rjy)De*4@bA(EquKlITy z_i?w%b=jj5L&(1fE@uYVZ7QZ!dUg%gS%V1t-9WEE`*QG(j ziT&${yvFVA_@V@l1^d^szT)x%QYxWa^+Z(&8UG3wSlmy9>6mahA_Jbig<%O}@i5%< z&;4OMeQ_bsoD@zT_|@!t_mqehV`;Qi5VS_}gS!0~6Ayj(STad<5DP~Qci5Dsve`ms zyr`jD_aC~;5)_7j**UVPrZlpYIG%8icmwR8wSP0R2Vizv1J*7Z&+?l<>KHg}gtYGu zB2KEnfw9s{Dd!XJ>Gi^!*(3VJvi*tks={2!dw)QuxNtohoQI2Lk$ZOHAJCrVoMw-J zGz~oB%<*lqjUZ6WvgX`;ph)LSTd*CLV_VZX?d

2sC^SIy7NbqzTeJzpchM%$TKspDf3yIl zz$8|Lw+f(*0c}Fmp$=pdf=i%yle{2!+5>~MeRoWB)sbZdRAc-*@n2wIS5V6QOLF2f zjN#c!(r!>9Np9eP0aV!uW9YSN@O}9Wazw}+EFJQ)Q2j&39`SZR9vj>@L=af`EuNz=Oh@p!OXoZO28N zU~HiXA{&BneS5(9`_WI-QILUwfYJbT{l*qp>UbV5CL)*%(F};+fnx;z!66^w#Q1Rr zpjoInCj$t~Mdm_CccWY*BnvTjvEW5?@<~9k<9mnt62#UZk`c{7O)wt&+gCOK)1Wzj z13f^sL)!{+iJ`n;DOtNYRua0DV5I-gE z9g24m!2!J?;sPCsh!DIwWP8AqQ^@v!pd8uufL}&}Tq~J^iCiE-Z2DUTiS)yl= zEEk~B71^QC*o1)rCt{GG=>r-%T}hbXK}{o)W?+FKD~fQw(MiBk#$&iH7{a7TAVC2g zVSx1M|9=_~V&+H$!%H|QLkVFCWDP-;DGH>6)rjg=AWt;FC;8oL1|e2l=?{&rf2CAE zfVj~WzD4h5!5BQ1KteSd@om;tjBDJ*E1MnVc+BSmou=wJP9yukVYp&wcZ zkmUnSt;n!|o*-oLLIW$Zc!AuI#S5nBAcL2{KREr^{)1=(vUs7F8QFhO6@y}lKt;&n z1@b^8y-+8Eo~Q?9@PAu(lN&`0L;-l6NN@oZiA~mw1S2H}fGrZNI7K$>=NP#zpS!1j z{2tqqyWL&3%g%8htIgF3-Tzbg`?_(?^O9rTKNKln#0kUil)RjJA^g#Of)3nWj| z>Jpi|w1e4bX%D8Bm?J0l6oKCxd7O~O55BxXMZzk1@Kjt&2Kjy&5Lx^KZckB>YALE2O z_W}RCI*io|L7KFB>ev>Dkm6H7gEM1vy;#Ji%i&DIX4BJ8a6TW{7G#pP@ASy9owk30U; zuVbw$O(c z{ck%UVX^1Un5yiKic%JHp{ImF8ilwMCz73S?OO34A<9c?f&K0m@6PO>iTq5nhuVmz_4iU0FoWhWLy&1!*y zZdYZXbj%TVyl)wQ!gKwHrSbq7>wh#HOWntmdzY--He_o7>*?o`i?Y10iwBr+RrJOS z3(*V)MSq|o12vou2sKO&*2_Hd|GWCf)q?pj_j6)67D_SO)J#(xwX6G*$mT+iL;r-% zEBQh&pww^UZdq|5y>BWIu?!s_Mz63}gsALTK3z3rMH3;7(kJQvBddGt$SNz6Y=dD3 z{v#~NMb?H!R%$}CVFA)5OIDzD5MpMmLH~qEB%yxqt09rKoG8b$Rr=>TlA}ti@-YDl<1qTS7GTa!1a z_~=+RWOf2i*6inZtOtb!=l7nvs}N zrW%*{II?Z{k2g1u+q{2O*BArMl|9*s_*o8<1i?JOFfwzo*)gea@&S*pS?{((Rm1Sh zPRx(A71AWr-|tyOfP9vVJ?#f>*jQnU{`YZbKU&pYLfU_v%5~j88r8m54h}&rZL#yy zQoQ3o?x&jRl$xFm13cX%wpha9$4_kymwo=RAFiL1>s40(sYzRDTx4~0A}fzL%1}Xf z-mIz(G#En*C>i?S)K6Hq=Asc5vro!<)y*NRv@lVIBL0(2r5cv;mw;7C9%PlaNp?@s zJbknSQ6AaUX{D+I?ZjCC diff --git a/modules/Functions/clean_data.csv b/modules/Functions/clean_data.csv deleted file mode 100644 index fb914f39..00000000 --- a/modules/Functions/clean_data.csv +++ /dev/null @@ -1,8036 +0,0 @@ -CES4.0Score -4.85 -4.88 -11.2 -12.39 -16.73 -20.02 -36.71 -37.1 -40.71 -43.74 -32.93 -20.25 -43.68 -45.08 -44.53 -48.78 -43.47 -45.1 -55.82 -37.31 -50.81 -42.12 -38.87 -41.72 -36.39 -53.41 -35.96 -45.88 -29.43 -25.31 -19.87 -25.58 -14.1 -14.98 -11.72 -16 -8.89 -9.35 -12.92 -7.3 -3.82 -4.57 -4.59 -6.27 -4.69 -4.7 -14.33 -15.34 -7.42 -6.28 -21.97 -21.69 -30.21 -33.36 -36.47 -28.35 -24.82 -30.13 -28.8 -39.68 -41.25 -50.2 -56.86 -45.57 -42.01 -31.11 -30.25 -36.37 -27.03 -26.06 -10.22 -13 -20.48 -29.7 -30.25 -35.42 -48.46 -65.03 -45.38 -45.45 -31.1 -15.74 -17.96 -14.34 -4.8 -13.61 -23.29 -31.39 -27.63 -32.68 -34.61 -33.17 -61.01 -52.21 -63.17 -57.14 -46.2 -36.59 -50.37 -53.65 -32.3 -21.77 -30.41 -23.07 -25.12 -31.17 -26.95 -28.62 -28.06 -53.08 -6.52 -10.87 -16.07 -23.88 -21.69 -3.81 -3.28 -3.41 -4.08 -5.37 -4.32 -1.57 -10.85 -9.61 -15.88 -34.16 -27.31 -25.02 -17.64 -14.9 -14.16 -NA -15.07 -16.05 -19.18 -23.68 -29.82 -39.81 -31.6 -22.31 -15.43 -10.5 -14.24 -7.27 -4.73 -18.83 -11.02 -25.18 -32.14 -31.46 -26.69 -23.05 -28.53 -2.48 -10.66 -16.66 -34.06 -31.74 -36.08 -20.48 -17.64 -17.81 -28.54 -17.29 -17.98 -11.8 -10.97 -15.57 -14.72 -14.9 -41.6 -13.97 -2.02 -6.55 -8.03 -6.78 -28.8 -13.69 -10.83 -28.32 -27.66 -34.26 -19.73 -19.55 -21.68 -21.16 -27.49 -49.04 -49.49 -34.4 -36.29 -25.69 -19.89 -30.77 -27.37 -32.97 -31.38 -43.02 -39.63 -20.66 -22.43 -33.33 -31.92 -31.92 -36.09 -36.42 -8.35 -6.18 -32.39 -15.56 -19.53 -33.37 -38.54 -33.17 -22.31 -32.15 -26.14 -26.25 -21.42 -24.2 -36.65 -32.64 -18.6 -3.49 -29.69 -32.01 -34.52 -27.68 -34.6 -34.87 -31.47 -39.53 -32.99 -33.99 -36.84 -30.09 -25.16 -30.01 -27.74 -23.3 -21.31 -29.4 -19.83 -32.98 -29.23 -28.51 -26.66 -34.06 -28.64 -20.16 -32.26 -33.74 -16.24 -9.53 -16.09 -28.65 -30.72 -23.2 -12.92 -25.16 -16.13 -16.83 -20.78 -17.25 -18.39 -15.25 -9.66 -13.25 -11.14 -6.25 -23.06 -10.49 -13.52 -11.97 -17.59 -13.3 -24 -18.81 -14.24 -13.04 -19.95 -14.3 -11.94 -21.11 -21.27 -6.06 -13.26 -11.02 -22.91 -16.97 -19.58 -23.3 -12.92 -16.45 -12.89 -21.73 -18.3 -20.63 -25.42 -11.42 -8.47 -12.18 -14.48 -4.91 -16.72 -13.39 -12.89 -21.13 -17.13 -13.56 -24.81 -20.13 -32.85 -33.37 -18.35 -15.5 -14.18 -9.91 -13.25 -16.65 -9.62 -5.54 -6.56 -20.3 -17.95 -6.26 -9.54 -6.32 -20.42 -6.12 -8.14 -6.64 -17.7 -13.02 -20.06 -9.86 -11.58 -13.21 -15.51 -16.38 -3.64 -16.05 -11.91 -13.26 -18.78 -10.03 -20.51 -18.9 -12.57 -11.7 -5.65 -16.15 -11.25 -12.65 -7.87 -6.34 -7.29 -NA -NA -28.2 -13.62 -11.89 -15.45 -18.45 -17.66 -22.69 -27.86 -26.49 -19.63 -26.58 -13.06 -10.73 -12.93 -15.09 -22.66 -24.79 -14.01 -10.77 -13.97 -26.14 -10.75 -30.12 -25.6 -16.66 -11.69 -10.78 -24.39 -14.77 -35.66 -28.33 -29.28 -41.09 -10.56 -21.44 -9.99 -8.53 -8.42 -13.41 -19.12 -12.46 -18.42 -19 -26.52 -14.89 -31.49 -28.57 -13.23 -16.74 -23.31 -38.63 -24.71 -33.83 -35.34 -16.39 -26.77 -27.39 -33.01 -24.81 -31.73 -29.94 -44.92 -20.53 -15.01 -10.17 -21.03 -18.36 -25.74 -16.14 -8.11 -9.89 -NA -33.41 -31.1 -27.44 -18.45 -24.54 -31.04 -33.67 -27.47 -25.78 -24.22 -26.46 -16.5 -26.15 -33.42 -23.35 -19.78 -27.71 -35.37 -20.7 -20.61 -23.07 -13.87 -9.15 -11.11 -55.3 -37.83 -41.02 -34.86 -14.93 -42.73 -37.87 -42.01 -25.11 -38.77 -40.26 -31.14 -46.04 -48.63 -47.99 -56.51 -42.44 -36.89 -28.44 -24.33 -39.04 -27.55 -39.36 -42.71 -40.17 -49.04 -46.37 -40.36 -22.9 -19.84 -17.69 -14.02 -37.68 -10.64 -24.17 -15.91 -4.76 -5.75 -18.13 -13.75 -10.16 -12.48 -19.43 -13.18 -3.18 -43.61 -30.39 -35.34 -23.25 -25.61 -12.97 -15.57 -11.12 -16.81 -19.04 -16.24 -7.53 -6.5 -17.18 -33.4 -32.31 -41.3 -34.08 -12.29 -17.82 -9.57 -20.94 -7.97 -9.37 -10.73 -6.13 -8.56 -6.73 -19.7 -14.88 -18.68 -6.19 -6.42 -11.4 -4.77 -3.98 -6.49 -5.78 -2.5 -6.9 -5.43 -11.84 -3.13 -1.9 -3.54 -5.48 -4.78 -8.54 -4.5 -2.29 -2.39 -3.12 -1.82 -7.84 -2.54 -2.61 -4.73 -11.88 -6.42 -1.86 -6.34 -5.48 -1.25 -1.93 -1.79 -4.84 -3.85 -4.07 -1.64 -5.47 -6.69 -26.25 -20.87 -19.05 -14.92 -14.34 -5.36 -3.35 -3.92 -7.98 -3.96 -4.19 -37.31 -8.01 -5.03 -7.79 -5.74 -22.72 -10.11 -18.07 -49.34 -21.87 -23.77 -16.91 -14.46 -12.69 -14.9 -13.39 -20.13 -6.69 -15.06 -15.63 -11.27 -24.8 -33.52 -60.68 -26.47 -40.56 -50.62 -31.04 -37.85 -47.93 -44.46 -43.87 -26.13 -27.87 -33.12 -34.36 -40.15 -28.94 -49.16 -55.87 -54.35 -37.6 -55.32 -39.89 -49.7 -55.51 -38.13 -12.82 -8.08 -8.52 -28.53 -27.84 -12.18 -18.23 -17.59 -5.02 -5.93 -4.74 -2.12 -47.24 -20.57 -26.14 -29.44 -19.48 -21.39 -18.62 -19.71 -14.78 -11.5 -16.42 -14.28 -21.43 -23.94 -4.16 -5.21 -4.96 -4.98 -10.6 -11.7 -3.39 -10.15 -3.33 -2.34 -5.57 -4.25 -9.41 -13.99 -4.22 -4.21 -9.34 -10.01 -8.05 -7.29 -21.97 -18.34 -21.38 -11.84 -14.26 -9.62 -7.19 -5.5 -10.26 -13.8 -5.85 -16.44 -21.36 -4.98 -4.64 -9.81 -5.17 -60.37 -80.75 -76.4 -75.3 -55.37 -60.03 -64.45 -81.33 -67.3 -70.21 -75.46 -80.55 -93.18 -72.68 -79.17 -71.21 -59.83 -61.39 -51.29 -36.01 -28.25 -47.39 -48.19 -32.07 -32.51 -37.91 -69.73 -50.09 -55.24 -61.28 -59.52 -67.94 -54.37 -44.3 -56.48 -68.07 -53.98 -67.59 -65.62 -58.1 -50.46 -55.31 -61.55 -47.94 -42.88 -48.1 -41.3 -57.25 -49.18 -38.95 -41.93 -28.55 -34.74 -52.94 -52.45 -48.94 -45.1 -64.87 -47.1 -22.7 -50.81 -52.67 -36.37 -34.09 -60.34 -53.72 -35.34 -51.66 -31.61 -38 -42.23 -48.04 -33.62 -48.46 -51.66 -18.66 -22.54 -31.84 -37.48 -21.13 -14.36 -32.65 -35.42 -14 -19.08 -19.8 -61.5 -16.13 -19.9 -21.44 -36.37 -29.52 -46.08 -43.75 -25.81 -23.14 -24.21 -41.41 -40.22 -48.27 -33.48 -41.97 -29.63 -25.41 -44.88 -55.13 -58.65 -51.34 -44.99 -44.84 -37.96 -39.87 -45.03 -46.47 -33.56 -33.54 -23.89 -53.5 -35.61 -42.76 -5.51 -15.92 -14.38 -11.66 -9.78 -28.24 -23.34 -16.05 -11.45 -15.2 -16.23 -19.2 -10.34 -7.01 -5.87 -10.67 -10.44 -12.94 -41.87 -18.61 -31.05 -40.1 -39.61 -24.86 -11.73 -17.88 -34.86 -20.45 -13.33 -35.68 -29.76 -21.44 -16.88 -19.46 -15.77 -11.44 -12.66 -12.95 -36.94 -45.66 -52.15 -35.53 -33.05 -12.78 -16.64 -10.54 -8.78 -51.79 -50.99 -59.68 -47.73 -54.8 -49.29 -66.35 -51.08 -53.14 -48.83 -43.93 -70.2 -36.76 -46.36 -45.7 -54.28 -45.59 -48.64 -50.23 -40.05 -47.24 -NA -40.23 -37.62 -44.02 -45.79 -44.76 -47.34 -52.17 -47.28 -57.16 -56.51 -27.94 -21.75 -30.4 -42.59 -24.88 -15.15 -38.44 -21.82 -18.62 -17.4 -27.43 -13.52 -8.04 -12.4 -10.33 -28.07 -27 -22.1 -31.21 -14.69 -10.99 -17.54 -10.27 -11.36 -15.16 -11.19 -21.27 -24.49 -27.63 -14.75 -19.65 -21.73 -13.63 -17.51 -16.46 -11.83 -NA -44.74 -50.99 -39.91 -53.21 -49.07 -47.78 -45.1 -30.32 -35.16 -40.51 -43.58 -31.76 -44.72 -50.8 -54.85 -48.3 -37.66 -41.64 -21.37 -34.49 -25.34 -46.9 -44.65 -41.58 -60.51 -58.38 -19.46 -22.87 -25.77 -21.08 -10.62 -15.06 -7.55 -15.28 -16.52 -23.55 -49.77 -46.63 -56.1 -44.09 -54.23 -8.13 -40.08 -18.67 -33.69 -45.72 -50.69 -30.39 -30.55 -30.95 -33.96 -38.81 -30.24 -31.39 -25.41 -25.78 -22.35 -25.21 -43.92 -40.71 -42.58 -41.9 -47.52 -48.95 -56.19 -46.37 -58.34 -59.5 -44.83 -40.27 -30.27 -45.59 -53.89 -68.07 -67.05 -71.91 -63.75 -51.95 -57.12 -73.36 -59.14 -53.18 -21.12 -16.01 -17.91 -13.27 -16.08 -44.56 -42.95 -40.87 -41.25 -35.91 -30.38 -21.4 -20.03 -19.36 -20.77 -48.79 -52.3 -52.83 -39.61 -47.68 -41.6 -50.03 -42.03 -40.83 -27.34 -27.01 -51.08 -11.83 -25.14 -35.39 -39.39 -41.19 -44.03 -11.24 -24.12 -42.63 -45.25 -38.24 -60.27 -13.85 -17.57 -9.5 -11.72 -12.88 -15.47 -16.52 -8.47 -18.67 -16.7 -12.9 -48.98 -36.17 -46.1 -52.28 -46.1 -53.53 -NA -43.54 -68.74 -48.62 -NA -NA -55.31 -48.33 -48.05 -58.48 -50.22 -29.4 -45.74 -43.59 -42.31 -17.03 -29.1 -20.46 -43.38 -35.77 -24.75 -21.12 -16 -18.17 -33.81 -28.76 -24.23 -24.72 -32.75 -26.73 -17.4 -37.9 -42.48 -NA -18.28 -29.48 -13.69 -31.66 -16.77 -35.86 -63.93 -42.73 -40.12 -39 -49.17 -51.11 -39.42 -35.09 -41.24 -40.07 -50.56 -40.69 -32.66 -26.14 -30.92 -39.83 -48.37 -26.17 -22.29 -24.59 -37.46 -52.55 -53.02 -33.6 -52.52 -45.39 -69.6 -51.83 -48.34 -34.15 -44.47 -34.69 -53.97 -NA -41.52 -NA -19 -25.87 -19.87 -17.01 -15.47 -20 -22.94 -22.71 -38.38 -35.15 -13.26 -27.05 -10.78 -17.51 -15.72 -12.56 -17.62 -13.23 -26.38 -30.58 -10.78 -NA -6.62 -20.57 -23.81 -13.17 -26.11 -30.64 -19.86 -27.07 -33.59 -31.91 -47.82 -34.95 -19.63 -25.8 -30.65 -19.52 -21.3 -35.39 -40.12 -38.77 -29.79 -47.25 -42.74 -42.91 -56.86 -57.53 -63.26 -58.9 -58.41 -54.89 -50.25 -49.19 -58.77 -74.98 -50.52 -58.69 -50.47 -58.96 -23.96 -27.52 -18.09 -33.89 -36.09 -39.41 -26.23 -35.41 -34.12 -41.58 -30.4 -38.87 -49.93 -17.01 -56.56 -19.58 -26.81 -19.53 -20.77 -29.62 -40.46 -36.34 -36.3 -29.54 -22.01 -20.66 -17.48 -9.07 -13.95 -22.62 -41.97 -22.72 -30.34 -34.97 -63.15 -30.68 -36.83 -33.69 -22.54 -26.31 -31.49 -27.95 -25.59 -17.81 -29.25 -18.98 -27.15 -35.54 -25.06 -25.24 -25.05 -19.73 -22.99 -23.45 -22.95 -22.66 -44.83 -36.9 -14.98 -36.79 -31.7 -32.46 -39.71 -20.3 -42 -43.07 -38.58 -25.95 -NA -43.12 -31.43 -42.01 -34.59 -53.32 -41.8 -49.97 -48.88 -40.22 -31.94 -44.71 -35.09 -28.86 -36.44 -45.77 -41.17 -51.67 -51.97 -68.96 -43.18 -56.55 -52.64 -59.31 -55.4 -41.35 -45.63 -27.38 -46.87 -49.92 -40.52 -48.67 -46.48 -31.97 -42.93 -46.76 -68.43 -70.33 -57.82 -56.79 -54.93 -52 -55.14 -59.8 -54.41 -59.69 -52.83 -54.84 -62.66 -52.6 -46.99 -42.54 -49.61 -68.65 -53.09 -45.7 -59.39 -68.18 -59.45 -47.67 -57.71 -62.14 -58.79 -70.04 -67.86 -53.42 -58.72 -56.66 -36.23 -54.62 -50.94 -56.52 -58.3 -57.74 -65.23 -59.67 -50.82 -48.21 -40.37 -42.98 -31.98 -38.63 -39.55 -40.88 -44.01 -29.1 -27.36 -40.39 -58.67 -51.47 -36.97 -53.26 -45.42 -59.3 -45.95 -24.08 -28.38 -33.37 -24.68 -33.15 -32.48 -29.73 -35.96 -45.96 -49.07 -32.59 -32.93 -41.09 -28.22 -33.27 -60.57 -52.29 -63.14 -65.37 -64.96 -52.02 -71.85 -58.51 -50.45 -54.19 -49.68 -51.44 -64.04 -43.48 -53.41 -47.76 -46 -43.96 -52.73 -55.78 -41.51 -45.94 -53.53 -45.78 -64.22 -64.47 -51.9 -36.89 -49.96 -29.48 -26.96 -34.18 -23.51 -33.71 -47.53 -57.51 -46.37 -28.54 -38.14 -43.02 -37.57 -43.32 -45.4 -50.07 -37.11 -51.24 -49.2 -42.82 -57.87 -49.42 -43.25 -45.23 -52.43 -49.23 -48.14 -51.71 -49.8 -36.09 -42.94 -40.45 -42.48 -38.69 -32.94 -41.06 -41.05 -48.38 -31.92 -9.85 -20.46 -18.79 -16.01 -53.2 -52 -55.01 -52.93 -50.01 -45.67 -35.09 -48.46 -37.25 -34.98 -18.74 -28.9 -26.62 -35.19 -14.37 -22.94 -15.62 -30.08 -33.22 -31.93 -12.93 -15.03 -16.47 -27.55 -29.77 -25.99 -5.81 -12.24 -31.71 -28.86 -34.53 -49.21 -43.75 -37.23 -25.73 -35.22 -32.92 -49.69 -32.64 -13.19 -12.18 -15.59 -20.95 -9.89 -32.07 -24.61 -24.81 -18.48 -29.25 -27.49 -25.72 -18.33 -8.18 -14.56 -7.46 -23.07 -31.76 -22.53 -13.84 -24.12 -15.66 -27.02 -34.78 -11.94 -15.69 -12.91 -5.96 -27.99 -29.15 -26.11 -23.77 -20.64 -32.34 -36.29 -22.32 -30.61 -23.49 -23.2 -25.23 -26.91 -27.69 -26.46 -35.95 -35.6 -39.57 -30.65 -29.13 -40.67 -38.97 -19.59 -33.11 -56.3 -24.01 -56.46 -68.57 -27.88 -18.53 -23.93 -15.35 -55.97 -41.41 -64.05 -59.5 -41.68 -35.35 -62.45 -39.71 -32.75 -45.51 -33.1 -32.01 -39.67 -30.39 -29.06 -40.55 -29.93 -20.97 -9.51 -25.61 -24.53 -20.48 -21.66 -27.76 -32.8 -31.19 -25.63 -23.06 -43.06 -48.37 -35.53 -33.57 -41.91 -35.55 -46.19 -50.84 -39.91 -58.12 -53.74 -53.85 -39.66 -41.2 -37.96 -49.72 -42.8 -49.27 -46.25 -48.57 -44.64 -49.33 -39.58 -59.6 -51.68 -58.63 -37.2 -51.64 -59.33 -39.37 -29.76 -22.62 -28.05 -24.36 -23.73 -27.28 -39.67 -45.98 -39.92 -52.36 -57.13 -47.83 -14.97 -12.79 -11.56 -6.19 -13.7 -17.86 -20.34 -17.38 -26.59 -24.75 -33.5 -23.33 -31.33 -46.87 -56.36 -54.38 -62.18 -44.71 -45.03 -34.61 -34.29 -35.34 -40.28 -41.33 -34.83 -48.28 -48.4 -37.91 -53.44 -66.95 -39.63 -46.45 -62.26 -45.21 -45.37 -53.97 -63.82 -57.56 -63.38 -32.1 -37.78 -38.25 -42.53 -16.44 -43.75 -52.16 -49.23 -36.99 -37.74 -46.96 -44.4 -53.28 -65.99 -49.66 -77.35 -73.09 -57.9 -35.06 -45.81 -33.37 -45.27 -37.19 -38.69 -49.12 -56.77 -55.75 -62.08 -68.07 -68.92 -65.82 -68.04 -64.92 -82.39 -70.13 -75.72 -63.58 -28.03 -44.19 -73.31 -75.99 -66.35 -59.69 -45.58 -59.88 -60.63 -52.01 -55.97 -51.78 -34.56 -50.2 -34.08 -31.5 -69.81 -48.3 -64.72 -46.7 -58.18 -37.42 -51.41 -52.04 -47.86 -31.33 -54.58 -48.15 -53.56 -51.89 -52.41 -47.6 -59.43 -56.33 -55.73 -50.5 -57.44 -52.03 -54.24 -52.15 -44.88 -54.91 -51.53 -54.94 -51.73 -19.8 -40.6 -28.86 -42 -43.18 -48.06 -45.89 -45.97 -38.36 -35.03 -30.66 -26.77 -39.17 -29.78 -34.61 -30.52 -40.95 -38.74 -46.6 -43.81 -24.78 -38.03 -39.4 -48.33 -42.71 -39.78 -53.66 -35.39 -36.51 -34.29 -32.17 -26.17 -25.89 -33.07 -28.23 -40.6 -26.92 -42.94 -41.7 -37.22 -45.58 -45.84 -47.15 -45.91 -40.55 -44.17 -26.65 -17.81 -23.12 -28.35 -26.8 -29.92 -16.14 -22.07 -23.82 -22.96 -23.9 -24.08 -21.85 -21.08 -30.3 -17.6 -23.66 -22.51 -26.89 -26.01 -34.43 -17.33 -23.77 -38.26 -46.25 -41.21 -49.1 -49.94 -42.34 -42.35 -61.89 -57.45 -44.49 -45.39 -55.4 -52.49 -55.94 -44.16 -44.37 -57.64 -40.75 -54.48 -57.46 -69.52 -72.78 -48.77 -60.95 -49.68 -43.58 -39.72 -42.61 -44.59 -42.48 -45.06 -62.25 -50.42 -50.09 -51.08 -45.38 -45.95 -49 -43.08 -40.81 -45.61 -43.65 -40.44 -47.34 -34.14 -44.96 -33.78 -62.73 -55.39 -62.51 -40.87 -50.36 -46.81 -48.02 -60.62 -44.29 -76.52 -75.55 -60.48 -62.38 -59.78 -76.65 -64.65 -69.26 -60.07 -52.82 -57.61 -53.36 -59.85 -59.04 -56.98 -54.75 -55.05 -62.38 -65.69 -69.56 -65.14 -55.25 -60.2 -60.13 -64.86 -60.76 -51.06 -49.99 -42.06 -42.58 -48.99 -55.65 -57.1 -60.11 -52.43 -55.16 -53.04 -63.75 -53.55 -49.03 -50.69 -57.99 -47.14 -62.57 -63.14 -34.72 -34.24 -38.33 -39.14 -42.81 -46.27 -46.1 -42.91 -55.94 -55.03 -39.59 -39.05 -50.51 -35.44 -51.79 -50.33 -41.19 -44.24 -34.54 -57.7 -60.89 -51.67 -64.5 -49.65 -51.53 -43.05 -50.25 -55.18 -50.94 -49.52 -38.32 -40.46 -43.55 -51.25 -53.98 -56.87 -57.57 -46.04 -72.93 -76.24 -69.57 -58.48 -71.24 -67.63 -55.54 -62.4 -62.92 -66.53 -70.76 -51.3 -60.01 -66.43 -60.22 -68.33 -59.38 -55.68 -58.79 -74.91 -64.15 -57.6 -57.23 -61.49 -64.86 -68.15 -53.31 -68.26 -58.51 -65.66 -53.47 -62.63 -61.69 -68.24 -67.75 -63.19 -73.34 -73.33 -63.83 -76.85 -8.73 -6 -6.95 -7.61 -7.71 -6.51 -6.54 -6.22 -2.16 -6.96 -5.2 -3.85 -18.27 -4.17 -2.23 -13.34 -11.66 -16.66 -21.66 -10.46 -10.57 -21.38 -20.25 -NA -23.64 -20.96 -24.13 -17.58 -5.73 -22.93 -15.87 -11.69 -18.4 -19.9 -15.52 -21.08 -34 -23.02 -30.56 -21.96 -26.82 -27.65 -30.96 -29.15 -26.43 -20.04 -16.79 -8.26 -13.76 -12.35 -7.48 -38.1 -24.75 -39.11 -27.29 -27.91 -19.47 -20.66 -19.7 -25.52 -30.12 -30.56 -34.89 -24.63 -35.98 -21.76 -13.99 -8.71 -20.29 -20.52 -21.38 -25.42 -18.84 -23.9 -15.84 -16.86 -22.98 -25.13 -30 -23.7 -19.55 -26.06 -23.31 -17.78 -18.26 -18.22 -12.1 -13.55 -20.56 -22.26 -17.68 -27.54 -35.7 -35.74 -25.06 -19.37 -16.49 -30.89 -19.26 -29.19 -13.57 -22.44 -11.39 -19.3 -11.66 -13.65 -14.47 -15.73 -22.11 -42.65 -46.69 -19.25 -9.91 -66.54 -58.13 -63.5 -74.44 -77.25 -53.29 -67.09 -47.97 -52.84 -27.01 -41.9 -42.42 -24.2 -42.37 -51.84 -62.66 -42.18 -40.8 -53.28 -45.77 -55.86 -47.74 -47.16 -45.55 -53.14 -71.29 -52.91 -58.86 -64.76 -61.64 -24.04 -70.53 -54.01 -32.82 -13.2 -17.91 -58.36 -49.96 -36.75 -38.33 -16.87 -62.39 -50.37 -34.48 -21.38 -18.27 -17.38 -26.39 -34.75 -30.09 -8.45 -18.25 -12.07 -28.48 -17.95 -24.25 -20.52 -16.72 -9.67 -21.37 -12.26 -27.15 -31.45 -25.24 -30.41 -35.43 -21.07 -39.44 -26.48 -22.19 -25.95 -46.58 -66.08 -55.99 -49.53 -57.75 -47.98 -42.49 -41.74 -47.67 -39.01 -41.78 -34.46 -42.32 -49.2 -42.23 -50.88 -51.22 -66.71 -68.86 -51.92 -53.23 -60.76 -51.24 -16.6 -24.59 -28.01 -17.74 -35.62 -54.17 -51.25 -23.41 -41.19 -41.55 -53.79 -32.49 -31.22 -32.26 -30.3 -20.19 -23.13 -23.64 -23.48 -34.42 -26.22 -42.14 -47.13 -NA -40.1 -51.57 -41.35 -47.23 -13.95 -10.85 -17.21 -18.3 -36.75 -19.19 -17.16 -17.61 -11.81 -14.58 -32.64 -28.62 -26.54 -23.35 -21.72 -11.35 -23.27 -28.35 -32.15 -24.35 -23.24 -29.25 -22.19 -17.18 -25.25 -29.27 -36.71 -25.78 -28.58 -32.25 -24.14 -38.37 -44.03 -27.43 -NA -22.07 -32.93 -34.66 -58.57 -49.38 -42.7 -46.32 -57.22 -57.44 -66.4 -51.94 -NA -53.43 -51.51 -50.81 -40.48 -59.53 -59.59 -39.41 -33.72 -42.04 -64.82 -36.06 -59.09 -53.05 -48.23 -49.84 -50.89 -NA -28.46 -15.8 -10.2 -28.62 -24.21 -23.93 -38.79 -24.42 -10.95 -21.83 -23.87 -25.21 -11.89 -15.97 -22.69 -20.14 -25.16 -20.23 -21.98 -19.48 -11.88 -14.92 -25.82 -25.38 -23.94 -16.74 -33.07 -33.07 -29.51 -19.66 -28.72 -27.59 -32.07 -31.78 -46.43 -38.15 -49.93 -30.8 -43.4 -60.16 -41.68 -42.78 -31.09 -45.94 -55.86 -54.09 -68.41 -51.36 -62.77 -48.45 -46.69 -34.63 -44.82 -50.27 -42.67 -42.59 -54.21 -52.47 -50.15 -47.52 -28.48 -40.99 -27.22 -29.26 -26.89 -24.31 -34.5 -28.43 -29.31 -28.83 -32.7 -36.26 -44.29 -31.96 -23.95 -44.23 -27.57 -37.69 -15.6 -29.33 -37.52 -44.43 -37.99 -40.96 -32.94 -51.08 -60.34 -43.49 -49.13 -56.23 -34.06 -40.7 -34.24 -40.71 -30.39 -54.31 -47.32 -49.24 -48.11 -45.55 -41.92 -34.18 -26.62 -26.37 -21.34 -33.88 -37.36 -26.68 -24.81 -29.16 -31.93 -39.85 -49.5 -52.91 -34.83 -54.57 -41.6 -29.58 -62.47 -40.18 -34.93 -54.19 -34.35 -59.49 -13.51 -38.43 -26.53 -32.9 -25.98 -26.1 -19.4 -10.02 -22.62 -16.75 -39.47 -40.62 -14.6 -22.62 -20.59 -11.26 -15.1 -18.11 -28.19 -62.58 -35.37 -11.16 -41.84 -37.12 -10.06 -11.37 -17.12 -18.75 -8.95 -10.78 -16.61 -17.26 -16.7 -13.84 -18.04 -23.48 -19.26 -18.54 -37.3 -31.45 -32.87 -23.49 -39.7 -39.97 -21.12 -30.98 -25.21 -27.17 -10.81 -15.19 -17.6 -26.55 -24.16 -27.04 -23.03 -39.87 -46.8 -53.91 -43.27 -46.32 -52.03 -50.06 -47.24 -66.56 -61.55 -64.31 -46.55 -36.8 -76.26 -66.78 -64.58 -57.03 -48.81 -52.21 -51.84 -54.32 -58.86 -55.5 -51.36 -76.91 -57.51 -68.72 -49.7 -51.74 -63.87 -67.02 -54.53 -61.83 -46.09 -62.71 -63.13 -70.22 -10.93 -15.23 -11.49 -21.57 -27.23 -22.25 -7.76 -6.81 -6.75 -9.31 -12.09 -34.16 -30.02 -22.31 -15.51 -23.1 -22.98 -21.19 -28.12 -39.13 -28.91 -35.65 -24.42 -26.5 -33.71 -27.28 -37.45 -31.22 -31.32 -28.18 -17.98 -16.3 -9.64 -19.75 -25.14 -14.19 -17.52 -23.69 -32.61 -23.65 -13.43 -16.92 -12.79 -21.41 -18.36 -20.85 -6.58 -21.3 -18.8 -8.07 -8.72 -12.19 -21.77 -15.12 -24.83 -28.91 -12.63 -20.79 -26.25 -35.85 -35.55 -21.33 -8.82 -18.95 -7.1 -11.37 -16.6 -31.04 -37.69 -30.96 -36.35 -42.01 -39.57 -41.75 -37.35 -33.14 -32.97 -39.24 -36.44 -38.11 -43.14 -38.32 -37.64 -44.82 -41.7 -40.15 -34.13 -35.78 -22.79 -24.06 -16.78 -29.09 -16.33 -32.31 -28.04 -25.18 -30.64 -34.97 -31.23 -26.42 -25.07 -47.88 -39.67 -35.85 -39.4 -49.7 -39.22 -39.45 -29.58 -39.76 -27.03 -33.35 -20.76 -32.27 -14.29 -12.8 -18.46 -39.89 -56.3 -44.73 -45.43 -38.19 -51.52 -48.22 -39.5 -37.89 -43.94 -35.52 -38.97 -29.78 -47.2 -17.77 -27.58 -34.06 -35.63 -28.8 -27.76 -47.87 -47 -29.96 -38.97 -46.42 -40.32 -51.42 -58.59 -62.48 -55.24 -48.91 -50.23 -53.33 -52.86 -45.61 -54.88 -40.76 -40.59 -34.81 -56.38 -58.73 -41.27 -47.13 -39.45 -33.71 -34.64 -33.67 -22.11 -23.48 -25.87 -24.74 -32.31 -24.76 -26.04 -15.89 -22.4 -25.34 -20.39 -24.77 -25.36 -19.99 -37.42 -27.07 -24.39 -39.17 -NA -41.52 -52.44 -43.37 -46.25 -58.18 -49.3 -46.47 -51.62 -45.37 -49.6 -49.56 -51.21 -64.9 -62.95 -56.59 -64.38 -58.21 -50.04 -46.94 -51.68 -60.33 -60.98 -57.46 -50.76 -51.42 -67.89 -73.71 -52.83 -56.07 -60.49 -57.77 -48.08 -48.86 -44.22 -60.92 -38.79 -51.64 -52.02 -62.27 -60.58 -50.94 -36.15 -52.15 -74.06 -61.5 -70 -NA -66.29 -69.06 -57.65 -53.88 -55.7 -63.92 -65.54 -66.87 -67.56 -69.29 -57.33 -44.07 -55.31 -42.92 -49.44 -54.56 -50.91 -49.43 -57.57 -57.08 -52.52 -62.44 -54.59 -43.78 -47.87 -55.49 -60.1 -62.93 -51.65 -55.78 -64.41 -51.36 -47.42 -55.77 -72 -60.67 -62.81 -54.34 -43.13 -63.32 -71.9 -72.69 -73.82 -66.73 -71.4 -70.45 -46.36 -51.92 -63.83 -59.44 -47.05 -60.39 -35.19 -47.35 -50.64 -54.01 -57.57 -63.05 -61.58 -63.95 -62.09 -62.02 -63.66 -74.9 -56.3 -45.81 -42.26 -62.79 -62.19 -50.31 -60.76 -55.62 -40.75 -52.64 -37.41 -42.2 -46.66 -59.06 -38.27 -66.38 -63.73 -66.43 -75.11 -57.46 -68.47 -51.26 -53.34 -40.53 -49.3 -65.11 -55.86 -70.56 -60.3 -63.66 -62.34 -72.57 -51.48 -72.25 -58.7 -53.98 -54.69 -59.91 -59.14 -55.52 -56.55 -59.12 -65.99 -65.81 -65.31 -61.02 -63.34 -51.39 -52.74 -52.29 -46.64 -55.28 -54.4 -65.67 -73.92 -73.16 -80.71 -52.1 -66.21 -64.69 -60.27 -50.88 -50.23 -54.45 -65.75 -62.43 -59.33 -79.29 -35.36 -56.21 -42.9 -35.2 -38.57 -55.98 -53.67 -51.1 -44.7 -35.46 -31.95 -33.17 -39.17 -37.56 -42.56 -34.96 -57.14 -48.21 -54.34 -56.25 -56.55 -45.5 -NA -47.01 -37.25 -44.31 -53.74 -35.23 -34.18 -36.74 -28.03 -39.76 -40.85 -39.07 -26.49 -37.62 -43.12 -51.45 -25.45 -38.11 -42.6 -47.01 -36.29 -37.31 -26.45 -NA -42.97 -45.52 -47.54 -40.25 -45.48 -48.04 -49.13 -48.71 -43.53 -55.92 -42.97 -50.12 -43.58 -37.11 -40.59 -38.43 -40.72 -35.57 -36.6 -39.94 -46.78 -35.75 -52.25 -58.81 -49.76 -62.66 -60.12 -60.44 -64.69 -46.5 -46.54 -40.62 -46.24 -44.03 -26.48 -43.03 -49.36 -37.83 -42.71 -37.65 -46.17 -51.86 -51 -44.55 -38.21 -31.11 -34.77 -32.32 -22.87 -18.83 -13.1 -21.87 -21.49 -21.65 -23.35 -31.67 -25.34 -31.87 -35.69 -38.02 -36.56 -32.86 -43.16 -32.19 -38.96 -32.75 -31.51 -15.05 -52.24 -40.21 -19.8 -21.96 -22.94 -56.81 -68.2 -69.38 -61.03 -71.42 -51.03 -49.59 -71.21 -74.37 -60.46 -63.67 -69.39 -47.65 -48.05 -48.72 -38.99 -32.32 -23.05 -22.24 -16 -22.51 -20.03 -22.17 -19.89 -25.23 -35.04 -29.16 -29.43 -30.2 -44.71 -58.34 -47.78 -45.08 -16.01 -30.81 -24.49 -42.11 -45.24 -41.76 -38.11 -69.65 -51.14 -51.08 -59.37 -56.84 -50.89 -60.16 -62.97 -53.98 -41.27 -43.87 -48.72 -62.69 -58.29 -52.39 -37.01 -42.9 -28.63 -16.4 -12.12 -10.14 -18.56 -13.49 -12.86 -25.1 -24.25 -13.87 -22.67 -10.82 -NA -10.55 -NA -25.54 -11.23 -24.47 -21.26 -27.87 -44.84 -40.34 -38.47 -45.4 -48.51 -59.57 -69.66 -64.73 -NA -67.06 -65.57 -56.7 -51.7 -48.3 -42.19 -51.17 -48.23 -53.63 -43.45 -39.45 -39.15 -39.61 -32.1 -26.7 -33.77 -22.36 -11.95 -20.51 -19.5 -43.36 -39.02 -24.86 -38.17 -15.99 -11.53 -12.02 -11.11 -9.4 -8.58 -25.22 -19.74 -6.29 -17.63 -NA -55.12 -38.31 -46.54 -46.29 -55.33 -51.26 -40.91 -36.91 -59.14 -36.17 -48.44 -32.01 -30.59 -33.94 -26.14 -37.81 -52.56 -31.25 -48.93 -42.31 -47.66 -48.2 -39.7 -47.02 -44.85 -34.19 -57.37 -41.06 -64.97 -54.28 -57.97 -67.99 -64.43 -56.55 -43.23 -42.06 -48.81 -58.1 -49.45 -53.35 -56.36 -54.55 -51.12 -46.12 -47.22 -49.02 -32.6 -44.39 -38.44 -35.88 -36.32 -44.67 -38.06 -38.96 -49.34 -57.83 -52.08 -52.14 -65.91 -53.17 -68.75 -57.34 -33.47 -50.27 -39.66 -43.32 -52.19 -45.9 -48.31 -58.71 -46.62 -48.35 -32.52 -38.32 -36.73 -46.99 -40.89 -46.81 -49.21 -39.26 -36.69 -47.31 -22 -10.69 -26.83 -19.41 -15.33 -11.81 -4.32 -4.22 -8.04 -11.49 -16.38 -16.66 -8.92 -19.2 -10.58 -8 -11.89 -9.13 -3.98 -3.08 -5.37 -6.46 -10.7 -7.15 -9.85 -13.15 -19.14 -12.94 -10.46 -8.44 -7.51 -28.11 -34.01 -22.47 -32.24 -28.75 -32.58 -33.49 -27.84 -15.79 -8.87 -31 -18.71 -27.01 -22.54 -20.82 -6.93 -22.08 -34.17 -29.32 -22.67 -27.13 -24.61 -21.86 -13.25 -23.88 -20.42 -11.85 -14.32 -15.93 -21.74 -26.77 -25.29 -22.74 -29.34 -4.49 -11.52 -8.04 -6.06 -6.47 -11.56 -5.12 -3.88 -9.48 -4.74 -7.13 -16.61 -4.91 -9.1 -9.31 -3.53 -29.56 -35.16 -21.09 -17.93 -19.72 -14.83 -25 -15.82 -17.06 -22.87 -25.73 -18.07 -19.91 -20.36 -38.72 -12.02 -13.93 -18.2 -14.1 -21.37 -13 -20.66 -18.42 -24.88 -38.21 -35.94 -47.52 -44.08 -44.27 -27.46 -25.65 -24.97 -17.27 -23.25 -35.43 -17.44 -26.84 -31.14 -25.65 -33.31 -27.97 -44 -20.07 -24.62 -24.09 -29.9 -32.42 -7.03 -9.04 -12.2 -15.2 -24.86 -12.33 -5.52 -3.55 -17.69 -21.85 -16.58 -4.44 -9.07 -9.42 -7.03 -4.36 -16.76 -11.38 -5.21 -39.47 -18.54 -30.07 -47.2 -51.35 -46.92 -32.39 -32.94 -27.18 -26.56 -21.35 -50.94 -32.12 -43.51 -45.34 -29.84 -28.22 -50.67 -40.9 -34.12 -31.78 -34.49 -48.63 -35.77 -48.28 -23.79 -NA -17.47 -15.48 -25.53 -27.62 -23.66 -20.3 -20.34 -21.01 -13.49 -20.33 -11.26 -10.76 -31.15 -43.18 -50.31 -34.31 -20.86 -30.12 -21.64 -18.48 -30.67 -12.88 -15.37 -12.71 -12.75 -33.16 -43.1 -42.26 -37.22 -41.65 -40.29 -31.86 -27.28 -34.93 -29.79 -27.8 -22.53 -26.92 -18.6 -32.6 -31.14 -20.3 -30.84 -33.48 -26.25 -30.84 -29.24 -26.32 -10.63 -14.25 -16.98 -8.67 -10.56 -12.33 -NA -NA -10.24 -25.7 -NA -7.93 -19.16 -7.56 -3.88 -18.2 -10.65 -10.15 -32.14 -14.91 -12.53 -22.29 -27.99 -18.81 -3.99 -17.02 -22.86 -30.88 -33.31 -25.82 -29.38 -16.8 -16.02 -24.53 -22.42 -18.17 -12.06 -6.75 -17.99 -15.34 -24.32 -12.15 -12.13 -9.28 -6.26 -7.09 -17.12 -15.88 -20.02 -15.05 -14 -14.15 -NA -18.76 -30.81 -24.89 -15.67 -20.77 -20.74 -23.81 -13.89 -17.24 -8.74 -23.94 -16.04 -37.79 -35.38 -7.47 -15.06 -NA -NA -NA -26.64 -NA -NA -NA -NA -NA -NA -NA -NA -NA -49.77 -NA -NA -26.13 -NA -NA -NA -NA -NA -NA -NA -NA -NA -NA -NA -NA -NA -15.74 -15.88 -11.92 -8.13 -9.96 -14.77 -42.43 -45.15 -39.97 -45.03 -60.45 -40.94 -41.3 -41.95 -43.18 -25.34 -52.38 -37.95 -42.05 -40.88 -71.55 -66.63 -56.18 -10.22 -9.57 -2.62 -6.75 -18.85 -4.22 -8.88 -10.53 -16.2 -13.77 -16.31 -19.47 -20.31 -11.6 -3.95 -5.78 -12.43 -11.95 -4.83 -21.46 -4.78 -12.45 -27.78 -31.01 -37.24 -2.89 -5.65 -4.32 -2.8 -3.98 -4.76 -6.02 -2.18 -9.95 -9.63 -5.13 -10.84 -10.72 -NA -8.97 -2.76 -6.96 -7.11 -1.03 -7.79 -1.81 -3.24 -4.97 -18.75 -7.61 -10.9 -11.54 -4.73 -5.05 -11.05 -28.76 -22.87 -15.77 -10.92 -13.97 -11.14 -14.83 -14.62 -16.64 -25.02 -24.04 -25.79 -27.85 -12.05 -16.53 -22.33 -9.38 -15.38 -12.39 -11.83 -30.15 -11.92 -33.07 -37.48 -24.36 -10.43 -55.14 -36.82 -44 -43.02 -35.05 -46.01 -41.37 -32.78 -38.03 -40.87 -45.39 -40.11 -40.52 -43.76 -55.08 -29.91 -48.32 -41.33 -45.53 -48.76 -43.7 -40.5 -35.42 -58.69 -28.45 -33.93 -66.41 -66.5 -54.88 -41.17 -41.35 -56.96 -43.02 -62.6 -54.4 -45.07 -19.84 -39.06 -42.24 -46.69 -47.79 -63.02 -51.06 -32.53 -51.44 -54.79 -43.28 -43.97 -35.32 -31.78 -14.08 -16.36 -13.21 -16.87 -8.6 -14.59 -17.7 -23.86 -28.78 -20.26 -23.09 -29.87 -34.04 -33.26 -34.67 -33.99 -23.11 -18.88 -31.73 -46.29 -28.37 -37.91 -26.33 -19.43 -13.63 -37.55 -34.51 -33.59 -43.86 -13.05 -14.29 -9.61 -24.53 -31.75 -23.44 -37.52 -19.98 -31.48 -13.88 -16.73 -19.2 -23.81 -19.49 -31.68 -4.47 -5.27 -33.96 -NA -4.47 -25.72 -18.19 -28.67 -25.71 -31.73 -24.93 -19.94 -29.38 -25.52 -4.04 -5.29 -3.87 -11.01 -2.8 -3.15 -5.83 -5.07 -4.97 -6.64 -5.41 -6.22 -6.66 -10 -NA -13.44 -7.5 -20.34 -6.01 -7.85 -12.86 -6.16 -12.84 -16.47 -19.6 -15.32 -20.15 -34.01 -35.28 -NA -17.26 -26.21 -25.12 -25.83 -24 -31.78 -34.97 -38.07 -21.33 -32.86 -NA -19.9 -22.5 -29.93 -35.69 -18.3 -10.93 -34.93 -26.98 -17.5 -17.47 -23.34 -19.96 -6.72 -28.05 -14.74 -9.77 -19 -20.6 -11.15 -29.13 -NA -31.54 -14.49 -32.4 -16.77 -20.46 -7.04 -3.8 -19.35 -19.94 -9.14 -6.4 -NA -16.35 -15.12 -18.08 -10.51 -15.07 -12.58 -14.71 -4.56 -9.44 -9.62 -11.22 -6.1 -8.75 -8.96 -12.63 -28.98 -26.41 -35.78 -13.07 -12.37 -11.34 -16.2 -14.2 -5.1 -4 -1.93 -11.54 -25.93 -29.66 -42.26 -45.2 -41.32 -34.81 -38.85 -54.82 -40.24 -33.6 -17.97 -54.8 -23.8 -22.84 -34.58 -15.64 -36.11 -25.95 -25.71 -10.16 -21.6 -24.91 -13.57 -24.34 -26.38 -44.04 -40.09 -27.16 -18.98 -38.46 -30.52 -26.57 -29.98 -25.63 -23.35 -25.87 -18.53 -41.49 -36.55 -20.84 -36.75 -58.33 -50.2 -20.47 -19.83 -17.33 -17.53 -28.89 -28.78 -42.61 -16 -30.55 -20.67 -14.8 -49.84 -43.9 -36.05 -20.23 -18.54 -12.94 -7.98 -10.51 -NA -22.51 -18.95 -9.46 -7.75 -11.49 -18.79 -12.73 -8.92 -8.52 -11.21 -19.68 -9.8 -5.39 -6.69 -4.17 -27.04 -13.47 -10.6 -25.35 -12.09 -21.61 -10.22 -13.27 -17.98 -13.99 -8.71 -8.35 -13.69 -9.16 -14.08 -9.71 -8.35 -11.21 -14.04 -14.78 -32.35 -14.79 -7.13 -19.68 -6.85 -18.58 -12.45 -9.64 -6.84 -4.06 -9.44 -9.4 -10.25 -13.76 -8.78 -9.63 -7.54 -9.98 -8.36 -7.69 -3.85 -5.58 -7.51 -2.49 -1.8 -10.83 -9.08 -8.69 -6.07 -9.51 -8.71 -16.42 -10.76 -8.84 -7.01 -4.02 -4.18 -8.31 -12.23 -10.73 -21.49 -21.95 -7.8 -9.09 -9.48 -12.82 -11.97 -20.08 -11.51 -10.18 -6.1 -11.58 -17.47 -19.84 -17.62 -37.97 -22.19 -11.25 -4.2 -5.37 -11.09 -7.36 -8.36 -6.86 -5.23 -13.27 -8.24 -7.49 -11.44 -8.82 -3.24 -6.54 -10.67 -10.91 -4.6 -5.26 -6.65 -11.72 -17.51 -12.69 -43.41 -33.82 -12.67 -21.31 -10.23 -20.89 -12.56 -11.5 -13.9 -23.01 -20.83 -18.18 -19.24 -16.84 -11.07 -5.85 -25.92 -17.83 -18.08 -14.13 -15.93 -14.42 -20.4 -26.8 -24.93 -21.3 -13.57 -19.84 -16.71 -21.34 -18.53 -15.51 -16.68 -12.01 -10.45 -11.35 -12.63 -21.72 -31.16 -15.85 -23.36 -6.09 -5.11 -14.83 -19.35 -18.26 -24.01 -23.42 -13.85 -6.4 -8.19 -4.87 -8.09 -3.85 -8.06 -5.1 -8.87 -11.8 -9.31 -8.53 -9.64 -10.57 -3.04 -6.54 -8.87 -6.03 -23.07 -26.41 -17.31 -12.69 -6.74 -5.9 -13.47 -8.29 -13.97 -6.73 -6.48 -19.17 -18.22 -6.95 -9.43 -18.64 -14.25 -11.36 -17.95 -20.94 -19.54 -14.65 -10.82 -17.54 -8.52 -16.39 -33.33 -45.06 -34.43 -31.89 -15.5 -13.93 -18.96 -20.31 -24.43 -25.7 -24.34 -22.2 -28.07 -8.87 -25.34 -17.95 -24.97 -48.5 -38.26 -40.31 -29.85 -31.3 -34.2 -40.4 -18.44 -45.04 -41.01 -28.82 -28.77 -44.26 -51.23 -43.81 -53.72 -55.01 -34.1 -38.64 -35 -50.05 -39.01 -45.09 -39.35 -37.32 -47.33 -40.45 -37.31 -41.31 -37.63 -49.88 -37.74 -51.89 -36.75 -45.46 -41.15 -46.86 -45.39 -25.84 -36.94 -31.06 -27.84 -37.41 -28.44 -26.65 -20.89 -20.77 -19.63 -23.75 -36.53 -27.02 -41 -33.17 -7.09 -10.62 -8.56 -4.75 -6.48 -17.88 -7.47 -8.36 -25.9 -25.72 -20.49 -7.14 -6.08 -5.99 -32.32 -25.32 -15.18 -9.49 -18.95 -27.51 -22.22 -23.32 -36.57 -31.52 -33.35 -30.22 -19.87 -25.62 -40.73 -22.84 -18.94 -31.74 -42.36 -27.14 -37.8 -32.88 -39.09 -42.85 -49.94 -37.05 -45.77 -49.72 -48.77 -61.4 -51.65 -40.1 -43.85 -62.78 -31.32 -53.91 -42.17 -39.6 -28.53 -34.82 -30.81 -32.36 -28.96 -49.82 -35.08 -43.91 -41.01 -40.5 -48.25 -45.95 -56.78 -47.8 -63.76 -36.09 -48.83 -36.66 -34.68 -33.4 -27.84 -33.94 -24.68 -37.61 -37.25 -54.29 -38.09 -39.68 -50.18 -40.23 -31.81 -24.25 -50.66 -31.86 -24.69 -32.22 -25.29 -27.07 -20.44 -26.55 -32.16 -24.58 -29.76 -39.8 -30.49 -36 -32.37 -37.79 -39.81 -24.95 -32.4 -38.59 -40.92 -28.8 -41.59 -38 -26.8 -30.27 -43.33 -51.62 -45.16 -36.04 -36.03 -43.86 -46.32 -29.91 -30.5 -25.21 -28.46 -24.56 -16.71 -17.21 -13.99 -11.05 -16.11 -26.67 -29 -23.76 -14.92 -27.66 -27.8 -30.37 -22.33 -8.53 -20.63 -16.95 -24.08 -13.98 -12.02 -7.95 -13.38 -9.72 -23.75 -25.92 -14.07 -11.54 -13.82 -15.21 -27.93 -27.68 -35.9 -30.36 -25.48 -19.95 -15.61 -14.04 -9.33 -13.69 -10.67 -9.17 -38.92 -15.35 -18.18 -20.74 -12.74 -19.01 -33.71 -32.98 -20.54 -29.52 -9.25 -13.53 -17.2 -25.67 -14.07 -6.85 -22.08 -20.73 -20.03 -10.53 -13.34 -15.94 -9.76 -51.94 -22.62 -23.71 -12.2 -22.08 -34.97 -40.11 -29.13 -40.16 -50.74 -37.48 -30.46 -35.76 -45.08 -26.63 -22.09 -22.84 -23.89 -14.23 -16.13 -19.72 -25.65 -16.51 -17.35 -25.54 -15.36 -27.69 -16.4 -15.96 -19.83 -22.74 -23.66 -17.53 -28.1 -27.21 -22.91 -18.95 -20.62 -22.5 -20.81 -15.97 -35.38 -27.03 -19.65 -28.02 -36.96 -20.01 -25.99 -28.09 -43.12 -60.66 -54.66 -32.87 -20.58 -44.87 -32.96 -NA -4.21 -2.91 -9.84 -14.66 -10.07 -24.15 -22.36 -11.18 -10.1 -7.4 -6.05 -10.71 -6.02 -8.17 -2.27 -4.87 -10.48 -19.64 -20.27 -14.05 -7.75 -9.75 -24.44 -25.01 -33.44 -28.31 -27.39 -12.75 -7.58 -9.25 -12.21 -8.42 -10.41 -11.14 -5.63 -20.48 -14.43 -20.68 -5.26 -19.56 -13.5 -2.7 -4.81 -7.29 -21.08 -7.92 -7.61 -8.82 -7.57 -16.02 -4.78 -16.55 -22.15 -13.96 -12.24 -14.67 -13.42 -5.81 -12.63 -20.14 -6.6 -6.75 -9.34 -7.99 -17.28 -5.17 -NA -5.33 -NA -9.57 -8.83 -17.91 -10.05 -8.32 -6.9 -10.26 -8.73 -6.71 -13.8 -4.98 -4.64 -8.39 -11.75 -7.31 -15.14 -9.03 -11.93 -19.69 -22.86 -15.84 -17.48 -39.38 -63.55 -57.9 -49.87 -67.08 -68.45 -43.66 -71.87 -51.59 -19.12 -16.89 -17.75 -28.28 -23.83 -35.54 -25.42 -43.82 -39 -33.27 -53.16 -44.94 -37 -32.3 -37.98 -55.45 -43.64 -41.49 -31.6 -34.74 -37.3 -58.51 -48.49 -41.9 -31.69 -52.6 -59.91 -48.07 -26.49 -48.55 -47.62 -39.9 -36.55 -34.03 -46.32 -47.73 -46.32 -39.39 -25.13 -35.11 -33.52 -39.42 -30.69 -24.37 -21.57 -27.07 -22.89 -15.43 -19.8 -19.56 -14.05 -16.89 -34.33 -34.14 -37.28 -19.07 -22.68 -26.41 -12.25 -33.52 -28.77 -29.84 -28.33 -30.69 -53.58 -40.47 -25.12 -46.95 -54.61 -38.64 -40.33 -37.27 -54.26 -33.77 -37.45 -35.42 -31.53 -33.65 -31.14 -37.34 -42.72 -31.53 -54.03 -31.05 -36.95 -48.66 -54.48 -28.37 -44.18 -55.4 -14.17 -14.64 -20.24 -10.21 -19.62 -14.61 -28.73 -18.46 -23.69 -46.36 -31.88 -24.99 -33.86 -34.49 -15.37 -19.61 -22.7 -16.29 -19.61 -11.47 -17.2 -30.08 -11.34 -30.49 -42.89 -17.35 -16.03 -13.89 -30.25 -14.81 -12.34 -67.33 -39.04 -30.75 -32.83 -28.61 -13.85 -56.73 -19.91 -23 -24.29 -35.71 -45.03 -26.46 -25.59 -21.28 -20.49 -18.04 -14.92 -21.07 -69.96 -41.51 -41.65 -40.16 -33.16 -42.29 -34.33 -40.47 -37.98 -32.97 -48.7 -31.73 -21.3 -30.89 -39.79 -30.56 -29.16 -31.63 -26.32 -19.13 -35.97 -34.34 -32.53 -21.71 -29.88 -37.77 -18.55 -9.59 -20.47 -9.47 -25.09 -9.71 -17.47 -36.3 -27.97 -24.84 -14.18 -19.51 -15.72 -20.16 -29.35 -27.93 -11.78 -17.51 -16.85 -23.1 -16.75 -20.54 -29.9 -14.51 -16.36 -30.47 -22.35 -57.89 -44.87 -38.46 -29.42 -43.77 -39.86 -32.97 -38.38 -45.47 -9.06 -21.77 -15.13 -15.63 -27.07 -19.15 -27.15 -15.17 -10.9 -23.39 -23.96 -16.04 -25.38 -14.88 -11.95 -26.57 -11.01 -16.13 -11.98 -13.01 -18.65 -12.56 -12.78 -10.49 -21.34 -16.53 -10.76 -13.66 -12.42 -13.4 -14.24 -14.85 -23.97 -20.54 -15.19 -14.96 -21.06 -19.24 -20.3 -21.92 -17.4 -23.93 -33.72 -34.02 -39.18 -37.3 -25.95 -27.68 -31.44 -16.56 -19.05 -26.77 -23.21 -44.41 -31.59 -27.34 -40.33 -33.12 -32.47 -30.61 -25.34 -30.17 -25.23 -28.34 -23.75 -14.47 -35.08 -24.83 -30.81 -24.91 -21.22 -25.53 -18.96 -19.56 -18.08 -29.95 -16.47 -34.7 -46.8 -23.56 -21 -21.44 -36.29 -38.29 -23.68 -30.89 -47.94 -42.79 -35.15 -32.48 -20.08 -52.19 -37.88 -19.55 -28.82 -21.95 -16.44 -21.54 -19.83 -19.98 -19.84 -20.55 -16.58 -7.17 -12.02 -15.83 -20.61 -18.05 -22.57 -15.07 -20.45 -23.71 -18.04 -27.14 -16.78 -9.67 -15.69 -14.19 -16.56 -21.4 -12.62 -19.74 -11.02 -8.29 -10.56 -10.13 -7.37 -7.16 -15.12 -12.04 -12.18 -22.24 -12.6 -8.79 -9.37 -11.2 -20.83 -12.15 -28.36 -10.42 -17.9 -10.36 -10.08 -4.38 -3.55 -9.57 -6.37 -14.7 -7.85 -16.07 -17.55 -7.46 -5.91 -4.55 -10.51 -34.18 -30.96 -18.4 -28.81 -13.71 -15.8 -14.24 -31.46 -18.7 -22.33 -17.41 -7.78 -18.48 -36.12 -50.13 -14.1 -28.3 -46.86 -44.88 -34.29 -13.04 -5.83 -37.72 -40.75 -29.83 -25.93 -48.71 -37.36 -34.59 -27.9 -37.88 -17.35 -54.08 -28.19 -29.99 -22.33 -30.79 -20.71 -44.96 -28.17 -16.47 -66.15 -26.95 -29.18 -32.99 -11.42 -15.77 -11.95 -10.77 -31.75 -23.89 -24.66 -37.92 -22.6 -35.34 -16.4 -13.8 -14.71 -33.76 -20.35 -15.27 -30.89 -24.02 -18.36 -24.66 -24.42 -16.84 -28.37 -20.12 -33.59 -25.31 -4.99 -NA -42.1 -10.01 -8.17 -11.7 -8.79 -9.2 -14.42 -13.59 -13.25 -12.9 -18.59 -18.59 -NA -NA -8.81 -3.77 -16.97 -24.4 -43.69 -45.68 -59.74 -35.17 -42.2 -31.01 -32.06 -25.47 -15.48 -9.86 -36.36 -34.08 -28.76 -50.79 -36.12 -42.65 -16.4 -17.69 -12.86 -15.44 -37.93 -32.29 -36.79 -28.72 -33.54 -24.46 -40.56 -29.83 -42.12 -22.06 -23.86 -34.16 -25.03 -43.76 -43.82 -34.54 -23.29 -22.93 -12.61 -16.67 -17.96 -10 -12.55 -21.89 -10.88 -15.55 -31.68 -30.61 -29.37 -29.14 -39.23 -37.28 -33.8 -46.21 -56.2 -41.73 -49.1 -48.15 -50.47 -37.02 -43.6 -32.74 -43.83 -39.69 -24.35 -44.67 -54.96 -44.68 -34.42 -41.63 -26.44 -25.01 -53.5 -68.71 -33.57 -23.12 -17.13 -55.71 -42.8 -35.41 -26.6 -29.62 -27.63 -36.42 -23.67 -19.39 -17.26 -12.24 -16.19 -13.14 -6.18 -11.16 -23.22 -30.55 -40.04 -38.27 -17.84 -44.21 -41.18 -48.19 -52.56 -51.06 -57.44 -46.71 -44.08 -43.63 -47.74 -43.19 -56.37 -45.71 -32.05 -43.17 -36.42 -33.96 -20.54 -19.47 -24.54 -24.63 -27.36 -25.6 -26.74 -22.87 -26.1 -NA -14.87 -12.82 -6.9 -10.46 -10.6 -15.03 -29.09 -25.83 -19.13 -13.15 -18.48 -18.17 -45.69 -29.49 -30.72 -28.37 -54.7 -20.55 -24.55 -21.67 -12.82 -15.61 -29.49 -27.43 -36.92 -16.97 -20.32 -18.14 -21.49 -14.23 -13.2 -11.39 -19.87 -42.76 -36.63 -32.24 -25.65 -24.32 -32.38 -13.75 -21.95 -16.63 -19.64 -9.71 -10.43 -24.09 -13.37 -12.23 -14.49 -9.94 -14.6 -15.86 -21.31 -21.7 -23.86 -14.09 -12.5 -8.05 -9.46 -8.45 -19.57 -26.18 -21.85 -20.9 -32.33 -20.61 -21.23 -21.29 -25.3 -19.25 -14.19 -19.37 -18.51 -14.44 -25.29 -16.97 -13.21 -8.29 -6.17 -11.17 -8.03 -14.43 -12.43 -18.48 -4.28 -6.48 -9.87 -10.65 -9.76 -15.31 -3.67 -11.91 -3.42 -5.9 -7.09 -11.62 -3.82 -4.86 -5.38 -6.9 -20.65 -14.73 -35.41 -12.24 -25.5 -28.53 -28.02 -27.41 -49.42 -21.98 -35.56 -27.19 -20.98 -24.97 -30.03 -37.25 -41.12 -42.61 -54.23 -39.75 -23.43 -26.51 -36.24 -13.27 -21.8 -15.46 -19.26 -41.67 -24.3 -24.97 -36.93 -17.67 -13.88 -17.83 -23.35 -16.11 -17.59 -25.08 -37 -27.21 -44.29 -39.49 -32.93 -22.22 -28.76 -20.09 -9.11 -14.79 -8.09 -17.22 -15.79 -11.82 -15.39 -12.44 -19.9 -8.55 -6.44 -19.35 -16.48 -31.87 -18.49 -37.04 -21.54 -31.35 -36.23 -28.27 -12.76 -14.95 -26.23 -17.85 -13.85 -12.68 -18.66 -11.65 -27.42 -20.83 -18.15 -12.85 -10.08 -19.85 -23.02 -19.31 -9.87 -7.41 -23.56 -30.09 -29.11 -32.79 -NA -33.16 -26.5 -30.5 -35.15 -23.76 -28.74 -16.63 -22.56 -33.82 -9.11 -23.49 -28.67 -19.17 -23.66 -13.56 -17.16 -20.76 -14.59 -27.61 -26.4 -21.41 -14.86 -14.93 -41.05 -44.18 -36.77 -38.58 -34.37 -64.2 -46.58 -46.6 -36.13 -32.86 -38.28 -34.14 -29.13 -30.26 -40.26 -40.4 -40.48 -33.74 -7.9 -34.87 -22.85 -9.73 -10.57 -10.8 -8.83 -28.91 -26.82 -19.64 -11.1 -37.42 -40.36 -44.19 -44.82 -46.18 -38.55 -41.37 -47.95 -45.56 -38.89 -59.53 -40.14 -49.91 -35.45 -48.28 -39.44 -49.87 -46.78 -42.76 -28.4 -40.73 -52.22 -60.61 -46.05 -47.03 -74.67 -43.72 -32.71 -46.32 -46.15 -35.56 -61.64 -34.99 -37.94 -27.24 -46.14 -42.94 -46.91 -50.49 -25.4 -37.96 -38.99 -40.9 -19.05 -5.81 -18.72 -14.76 -21.72 -31.22 -9.9 -18.98 -31.48 -9.51 -11.79 -22.6 -21.69 -30.44 -24.11 -17.75 -13.89 -20.14 -23.74 -18.5 -25.38 -26.89 -20.54 -38.18 -38.34 -40.37 -41.76 -27.63 -39.69 -56.12 -40.36 -33.85 -43.01 -25.48 -29.5 -32.21 -28.4 -46.96 -44.25 -53.27 -38.13 -37.4 -34.52 -33.15 -32.54 -28.15 -27.75 -43.28 -31.53 -36.75 -27.8 -48.61 -42.71 -36.7 -35.67 -48.64 -37.98 -50.22 -40.72 -55.89 -53.39 -35.52 -37.03 -29.51 -40.94 -46.51 -51.17 -44.51 -40.57 -54.59 -44.61 -27.51 -28.04 -41.1 -45.3 -52.72 -30.6 -55.34 -62.39 -41.86 -48.05 -46.99 -49.13 -56.52 -58.01 -60.49 -48.62 -54.3 -58.8 -54.86 -51.13 -44.59 -58.58 -41.27 -33.44 -38.06 -26.35 -31.87 -35.92 -34.5 -28.6 -36.52 -43.05 -39.09 -56.35 -55.68 -59.5 -66.66 -42.48 -49.25 -59.46 -62.38 -61.33 -61.37 -65.32 -49.17 -41.62 -44.43 -48.62 -50.63 -48.69 -45.54 -47 -48.02 -49.03 -41.63 -35.47 -32.89 -35.86 -54.83 -15.41 -24.32 -36.51 -46.09 -39.49 -35.93 -43.29 -53.05 -29.28 -48.35 -36.35 -20.63 -31.8 -21.79 -43.06 -32.03 -35.39 -29.57 -44.77 -44.09 -46.31 -37.92 -20.13 -26.47 -22.41 -34.98 -56.57 -42 -18.59 -22.35 -13.53 -19.64 -21.56 -17.35 -38.21 -22.28 -25.55 -24.35 -11.87 -27.19 -31 -16.74 -14.53 -17.47 -28.58 -24.51 -29.2 -17.79 -14.31 -16.55 -29.08 -20.88 -21.85 -42.88 -50.67 -22.03 -13.54 -12.63 -20.56 -37.1 -47.94 -49.33 -20.4 -22.71 -14.34 -17.48 -16.85 -18.2 -16.29 -16.84 -20.21 -18.31 -13.83 -49.13 -41.33 -43.01 -22.54 -25.51 -30.65 -15.62 -45.97 -40.36 -20.16 -26.47 -25.89 -35.62 -28.12 -30.99 -32.18 -25.73 -22.53 -20.47 -22.05 -30.83 -26.25 -15.48 -18.72 -23.19 -22.6 -34.9 -30.21 -40.27 -16.9 -22.81 -17.77 -23.77 -16.06 -14.96 -13.08 -19.13 -16.06 -17.44 -18.61 -18.55 -15.89 -18.81 -29.24 -34.09 -26.77 -20.58 -22.32 -14.05 -25.72 -25.49 -22.54 -30.65 -18.53 -27.12 -13.99 -25.94 -20.84 -25.99 -27.73 -11.56 -12.33 -14.53 -28.96 -44.32 -31.88 -42.07 -30.97 -45.66 -33.42 -28.97 -28.75 -27.11 -NA -62.13 -66.69 -33.47 -23.79 -33.68 -6.02 -NA -NA -6.98 -13.21 -13.66 -22.77 -19.82 -18.09 -12.76 -22.7 -10.2 -11.66 -9.09 -8.47 -14.44 -18.96 -11.26 -23.81 -37.28 -19.03 -19.8 -8.79 -6.31 -10.21 -19.48 -39.05 -42.42 -22.9 -30.63 -36.46 -46.22 -44.82 -48.88 -30.76 -30.94 -25.98 -33.31 -35.25 -29.47 -33.76 -31.05 -31.72 -40.93 -49.26 -31.29 -18.77 -24.07 -20.49 -34.5 -26.59 -20.18 -43.74 -38.03 -29.5 -35.08 -32.02 -23.27 -21.95 -28.68 -18.99 -38.36 -27.56 -20.96 -22.07 -30.82 -26.72 -30.96 -19.61 -17.28 -27.87 -26.4 -21.85 -18.01 -18.73 -22.82 -50 -45.52 -40.09 -43.21 -37.18 -52.34 -53.07 -50.35 -48.78 -65.81 -44.61 -51.5 -NA -54.03 -60.44 -43.75 -37.42 -18.49 -17.58 -16.54 -23.83 -31.61 -41.48 -48.6 -61.14 -62.51 -47.28 -33.15 -36.85 -32.51 -NA -22.82 -38.55 -25.67 -26.88 -9.38 -21.17 -NA -NA -28.03 -27.08 -16.95 -29.17 -11.98 -7.46 -7.32 -3.94 -6.43 -4.07 -10.13 -9.15 -6.28 -13.33 -7.82 -5.79 -12.02 -10.79 -7.16 -13.04 -14.32 -6.8 -4.58 -5.87 -3.74 -8.74 -3.38 -7.14 -3.61 -4.08 -14.67 -7.97 -9.84 -4.06 -1.67 -14.25 -5.92 -8.54 -6.58 -5.13 -5.78 -6.02 -3.2 -6.25 -7.4 -4.48 -6.85 -28.64 -15.16 -16.94 -9.43 -7.66 -14.85 -6.36 -8.4 -9.92 -11.97 -19.09 -15.16 -13.28 -10.16 -13.69 -13.55 -12.78 -18.32 -20.86 -28.65 -22.98 -14.42 -15.14 -11.29 -10.06 -8.26 -8.24 -5.22 -15.13 -22.6 -15.98 -27.72 -23.69 -25.15 -21.57 -25.58 -27.18 -9.39 -9.7 -31.68 -17.18 -29.23 -32.34 -25.46 -20.19 -21.79 -15.82 -18.22 -12.34 -10.39 -20.24 -14.86 -34.78 -13.39 -20.58 -25.19 -12.28 -25.27 -26.43 -10.32 -8.73 -5.71 -5.28 -6.88 -17.71 -20.92 -15.22 -11.61 -15.59 -19.89 -5.63 -6.4 -6.66 -8.2 -7.3 -19.11 -7.97 -6.93 -NA -NA -27.41 -29.24 -25.25 -33.92 -39.83 -28 -17.13 -33.81 -45.66 -29.31 -29.2 -33.69 -31.16 -30.12 -25.73 -32.35 -34.61 -40.93 -31.47 -29.82 -34 -24.04 -32.1 -27.86 -34.07 -6.95 -7.91 -5.93 -6.83 -12.36 -NA -47.66 -47.42 -49.07 -47.45 -47.31 -31.22 -37.35 -34.82 -37.87 -43.5 -35.44 -26.43 -27.79 -28.81 -38.59 -43.98 -52.53 -51.3 -43.62 -40.11 -26.42 -17.65 -27.22 -26.54 -40.96 -32.09 -31.88 -39.48 -47.05 -33.42 -26.16 -26.76 -30.19 -34.97 -42.77 -38.76 -28.6 -21.39 -11.82 -33.88 -17.52 -14.97 -30.28 -33.31 -8.78 -9.29 -15.3 -14.68 -11.28 -7.96 -7.87 -9.67 -8.09 -14.45 -14.34 -19.42 -12.91 -16.06 -18.15 -14.42 -9.87 -9.92 -11.96 -8.39 -27.7 -16.96 -28.66 -28.87 -10.65 -23.7 -23.23 -27.9 -14.55 -30.47 -19.39 -26.58 -20.35 -31.03 -40.7 -49.87 -34.43 -20.88 -18.26 -14.41 -23.25 -11.71 -18.35 -31.9 -23.69 -23.46 -25.52 -12.85 -17.45 -30.92 -13.33 -15.71 -21.58 -6.29 -6.01 -12.03 -5.27 -18.04 -12.4 -28.03 -32.1 -25.07 -35.24 -36.34 -46.67 -42.53 -34.79 -24.25 -24.21 -48.46 -36.52 -34.71 -22.45 -28.73 -33.02 -21.86 -43.22 -9.9 -10.71 -13.4 -13.2 -5.66 -10.01 -6.68 -9.37 -11.46 -11.98 -18.06 -28.73 -17.41 -26.63 -13.75 -28.3 -11 -14.79 -15.82 -13.23 -10.67 -20.15 -16.66 -5.47 -13.4 -5.44 -6.53 -12.01 -15.37 -9 -5.71 -3.07 -7.62 -7.55 -14.48 -8.58 -10.41 -4.44 -8.01 -13.84 -7.1 -13.85 -10.49 -10.74 -15.37 -10.3 -14.74 -4.21 -8.24 -8.34 -4.14 -20.74 -21.19 -12.99 -5.27 -6.02 -8.68 -4.07 -3.56 -5.82 -6 -6.4 -4.46 -8.25 -8.29 -9.51 -5.05 -4.45 -10.71 -3.99 -2.89 -10.1 -6.18 -12 -10.03 -15.99 -4.02 -15.25 -13.02 -13.46 -7.57 -11.05 -5.31 -7.08 -5.46 -4.23 -9.62 -16.73 -9.84 -17.56 -37.31 -13.06 -26.05 -18.19 -16.9 -32.63 -14.9 -19.88 -12.28 -12.47 -13.85 -17.3 -19.72 -24.08 -22.4 -21.5 -23.35 -37.65 -10.2 -12.67 -18.16 -16.65 -16.84 -16.48 -17.26 -24.94 -13.9 -6.48 -13.6 -24.89 -18.69 -25.22 -24.85 -13.49 -15.97 -23.89 -4.2 -11.66 -16.78 -9.4 -12.39 -22.08 -18.43 -22.44 -14.21 -9.41 -23.87 -17.15 -21.17 -22.45 -15.55 -16.51 -21.45 -24.72 -18.75 -19.73 -11.84 -23.9 -18.18 -12.3 -3.96 -21.85 -14.94 -10.2 -8.1 -17.51 -10.41 -12.24 -12.33 -6.71 -5.84 -7.24 -5.25 -22.55 -30.49 -12.45 -12.47 -18.18 -11.86 -10.94 -10 -20.86 -11.17 -6.5 -16.52 -30 -14.52 -14.44 -8.96 -8.43 -25.55 -15.51 -30.39 -24.24 -29.43 -14.25 -21.66 -19 -27.81 -25.02 -31.1 -13.35 -11.43 -18.6 -16.72 -24.67 -21.82 -4.67 -26.46 -20.67 -9.75 -33.29 -27.72 -29.46 -11.86 -8.84 -26.53 -18.57 -17.51 -11.93 -9.6 -12.78 -15.76 -13.96 -8.69 -5.76 -5.16 -10.17 -15.71 -13.58 -18.24 -32.34 -6.04 -6.06 -8.84 -4.27 -17.18 -8.74 -10.8 -20.72 -8.98 -14.52 -2.94 -42.86 -40.71 -15.95 -21.69 -9.42 -14.47 -13.63 -16.95 -23.09 -29.69 -18.85 -10.15 -15.5 -19.08 -18.66 -27.82 -24.94 -24.1 -16.4 -12.91 -30.07 -20.78 -22.9 -24.26 -30.83 -26.41 -29.83 -30.12 -39.3 -41.16 -6.67 -7.29 -9.02 -7.27 -4.45 -5.29 -3.29 -10.02 -6.97 -8.89 -10.63 -9.53 -10.18 -10.23 -15.69 -13.68 -10.11 -13.47 -10.12 -11.7 -21.14 -6.79 -13.93 -19.17 -20.11 -18.6 -14.23 -6.8 -12.25 -10.52 -9.23 -9.1 -22.22 -10.61 -4.92 -7.03 -6.39 -36.74 -28.35 -27.87 -40.37 -50.63 -30.26 -36.99 -28.61 -5.01 -4.04 -6.25 -3.27 -4.99 -17.08 -24.02 -28.44 -10.8 -4.13 -4.59 -1.65 -4.86 -6.8 -2.6 -5.39 -4.59 -13.77 -13.6 -13.68 -26.81 -28.59 -20.74 -27.56 -22.97 -25.38 -49.33 -40.26 -46.93 -50.51 -54.61 -44.54 -46.98 -21.46 -16.61 -15.15 -15.68 -19.47 -18.92 -29.64 -18.43 -27.11 -40.29 -30.12 -20.2 -22.03 -12.1 -14.12 -20.13 -28.5 -21.25 -19.06 -14.03 -12.83 -27.78 -33.51 -35.7 -29.44 -9.3 -6.21 -11.32 -7.49 -7.9 -5.6 -7.16 -5.57 -4.85 -5.67 -4.05 -10.27 -8.17 -7.52 -23.22 -20.45 -19.95 -21.82 -26.85 -12.01 -15.17 -9.64 -16.45 -16.62 -9.47 -11.32 -16.16 -18.65 -21.42 -19.03 -29.96 -8.66 -11.77 -12.09 -15.01 -13.52 -10.97 -15.38 -16.11 -10.86 -20.78 -13.45 -11.43 -16.27 -11.85 -21.17 -16.64 -16.81 -17.97 -15.29 -20.25 -3.4 -17.32 -19.91 -21.36 -40.57 -26.77 -42.61 -31.1 -15.9 -NA -NA -27.13 -45.77 -NA -77.87 -75.61 -41.91 -53.92 -48.99 -57.81 -86.65 -72.68 -63.38 -47.76 -32.95 -35.95 -16.68 -37.31 -42.82 -51.98 -48.86 -54.36 -57.23 -62.42 -63.29 -49.86 -64.08 -44 -63.16 -61.16 -62.75 -49.07 -38.31 -55.66 -42.03 -50.55 -34.97 -29.6 -40.71 -37.61 -38.09 -27.82 -51.78 -17.22 -32.15 -30.31 -25.5 -17.82 -22.95 -30.62 -24.18 -24.88 -34.06 -34.86 -44.58 -36.75 -39.01 -34.72 -34.28 -39.18 -35.67 -33.81 -36.11 -31.65 -39.71 -37.77 -39.69 -35.42 -32.03 -36.12 -34.47 -26.84 -56.55 -38.4 -57.84 -70.42 -56.35 -44.21 -23.43 -37.82 -9.77 -19.16 -27.42 -17.27 -13.49 -37.81 -32.97 -38.85 -13.96 -14.64 -19.75 -34.4 -30.09 -43.31 -51.46 -48.45 -58.46 -27.36 -34.26 -17.73 -22.39 -22.97 -29.49 -30.38 -25.84 -26.61 -25.1 -38.91 -35.01 -53.31 -50.97 -40.89 -38.32 -48.05 -42.78 -29.8 -25.14 -21.96 -39.91 -43.61 -52.13 -39.96 -56.42 -42.78 -46.8 -26.31 -33.39 -38.08 -29.48 -22.53 -16.85 -16.16 -13.32 -42.39 -31.31 -34.37 -31.13 -27.28 -22.44 -28.41 -33.5 -27.93 -27.96 -8.96 -21.56 -7.63 -24.21 -15.69 -18.86 -12.5 -10.44 -15.61 -5.45 -6.31 -16.21 -8.36 -15.73 -23.69 -7.24 -15.93 -7.29 -18.13 -11.78 -7.87 -14.15 -22.16 -16.14 -27.49 -17.97 -13.13 -NA -19.96 -13.11 -6.11 -13.82 -6.96 -8.44 -10.86 -9.81 -13.04 -14.86 -19.47 -24.64 -6.79 -17.24 -27.27 -18.05 -10.71 -12.63 -6.43 -8.89 -8.29 -6.64 -NA -10.27 -9.8 -28 -33.58 -12.57 -12.59 -22.19 -22.71 -35.79 -27.36 -34.33 -21.79 -24.04 -20.73 -29.68 -32.62 -30.15 -21.45 -24.92 -18.44 -20.61 -14.62 -20.87 -19.11 -17.98 -20.19 -20.33 -28.02 -47.38 -39.97 -46.09 -32.19 -13.63 -11.74 -12.54 -13.77 -13.03 -12.36 -9.2 -8.87 -7.52 -6.34 -16.17 -14.12 -16.33 -12.98 -16.25 -40.95 -26.79 -34.57 -24.37 -11 -9.55 -9.68 -15.3 -12.1 -12.56 -22.32 -11.12 -14.37 -13.27 -11.38 -5.19 -3.78 -3.8 -21.34 -32.62 -29.99 -42.22 -24.6 -9.72 -9.48 -19.3 -6.1 -5.18 -4.44 -5.8 -9.4 -16.9 -8.34 -19.38 -17.39 -21.12 -31.86 -25.11 -16.75 -12.91 -9.55 -11.31 -16.73 -7.01 -13.39 -8.47 -14.39 -6.99 -20.34 -15.97 -8.05 -17.83 -5.85 -2.25 -4.18 -6.39 -17.04 -9.62 -15.05 -4.41 -3.38 -2.04 -1.1 -3.36 -2.45 -1.35 -3.04 -2.17 -8.35 -30.07 -46.84 -40.37 -36.14 -27.02 -8.19 -11.75 -30.59 -39.94 -30.05 -16.08 -20.8 -20.96 -25.23 -7.66 -3.18 -5.73 -7.19 -5.68 -3.87 -6.27 -30.77 -32.1 -39.74 -41.22 -33.38 -7.47 -7.43 -7.97 -4.26 -12.46 -12.36 -5.14 -8.45 -5.07 -14.79 -9.94 -9.38 -12.29 -10.52 -7.69 -11.65 -NA -17.58 -12.57 -2.76 -13.32 -23.91 -14.48 -9.65 -2.73 -8.35 -11.45 -8.11 -25.18 -37.04 -31.83 -31.06 -22.81 -33.11 -18.97 -26.2 -9.89 -12.73 -7.31 -8.86 -2.46 -19.62 -22.36 -23.94 -5.13 -22.28 -16.14 -13.74 -8.93 -8.37 -9.19 -22.28 -14.76 -9.96 -14.02 -6.64 -28.53 -16.93 -7.93 -34.68 -31.21 -36.02 -26.42 -29.58 -24.99 -24.2 -23.7 -29.06 -36.59 -25.18 -29.05 -37.03 -36.9 -26.19 -44 -NA -18.8 -35.59 -26.92 -30.27 -30.11 -22.16 -14.48 -25.22 -15.67 -15.67 -19.48 -16.7 -5.05 -11.22 -14.77 -14.33 -8.69 -16.87 -10.71 -12.18 -17.97 -16.06 -15.77 -41.13 -16.11 -20.36 -6.78 -22.01 -NA -NA -37.37 -25.77 -26.05 -29.44 -18.06 -27.5 -28.87 -33.53 -33.75 -33.13 -28.09 -37.46 -26.32 -28.72 -37.79 -30.03 -37.31 -39.83 -47.58 -34.84 -20.46 -20.39 -21.5 -27.18 -16.01 -23.79 -15.39 -8.67 -14.16 -11.85 -18.74 -12.44 -8.06 -4.91 -15.36 -11.25 -8.19 -15.25 -13.94 -6.18 -5.07 -11.27 -5.23 -6.68 -9.66 -15.52 -10.96 -10.42 -11.11 -42.71 -18.85 -41.35 -26.63 -41.62 -35.11 -17.74 -18.63 -30.31 -18.71 -33.77 -36.08 -30.69 -35.15 -22.9 -32.47 -29 -23.61 -26.87 -26.98 -40 -28.91 -36.62 -26.49 -24.13 -23.72 -8.73 -7.21 -22.74 -16.18 -9.21 -11.85 -12.19 -12.25 -5.94 -17.7 -7.49 -6.49 -4.65 -3.06 -8.99 -6.03 -18.86 -23.82 -36.34 -33.69 -22.65 -22.88 -22.45 -22.36 -14.23 -25.37 -15.86 -47.93 -40.41 -28.29 -30.79 -24.25 -36.47 -39.35 -33.03 -40.45 -30.16 -14.1 -17.8 -19.92 -20.79 -25.75 -22.27 -24.36 -16.61 -18.46 -7.54 -7 -16.77 -7.3 -21.76 -10.29 -7.95 -17.44 -12.1 -43.42 -34.01 -16.93 -17.9 -23.73 -21.66 -26.74 -13 -21.32 -22.18 -19.72 -7.12 -16.06 -NA -23.34 -12.48 -20.21 -22.69 -8.47 -21.35 -16.45 -23.43 -26.65 -25.54 -34.61 -22 -26.81 -22.77 -23.25 -22.21 -14.76 -22.99 -20.74 -20.49 -13.28 -23.03 -36.03 -30.42 -23.89 -24.59 -25.59 -29.28 -18.17 -19.57 -16.83 -12.38 -17.85 -15.5 -23.01 -23.26 -10.86 -12.32 -12.37 -10.97 -11.99 -12.24 -9.29 -18.93 -10.85 -13.32 -11.13 -14.37 -13.99 -18.19 -17.97 -18.07 -13.2 -13.34 -14.47 -10.73 -6.48 -8.89 -9.64 -10.09 -13.06 -8.44 -10.67 -8.34 -9.32 -5.32 -4.19 -5.89 -4.8 -7.6 -3.72 -10.98 -3.83 -3.91 -1.31 -5.73 -10.59 -5.19 -4.5 -9.43 -4.56 -6.53 -12.49 -12 -10.51 -3.97 -3.53 -9.16 -11.47 -5.22 -12.16 -11.72 -16.21 -12.11 -12.06 -11.41 -5.5 -8.35 -6.15 -4.1 -9.55 -10.84 -4.27 -9.16 -12.15 -14.81 -13.04 -11.01 -14.28 -17.26 -11.03 -17.2 -19.27 -17.62 -29.44 -27.92 -13.67 -15.75 -11.29 -16.83 -13.65 -7.87 -12.79 -21.77 -10.52 -14.22 -23.32 -10.48 -20.01 -22.7 -16.45 -12.75 -5.79 -9.98 -6.79 -4.66 -14.53 -6.9 -4.2 -3.83 -7.35 -3.94 -3.17 -4.12 -8.84 -10.4 -15.5 -5.73 -6.43 -3.33 -8.67 -8.62 -5.69 -7.51 -10.99 -7.28 -9.07 -NA -6.71 -4.68 -7.06 -5.22 -4.72 -1.61 -6.07 -8.67 -4.48 -7.15 -2.9 -10.59 -5.89 -4.72 -5.65 -11.19 -6.85 -11.75 -14.55 -30.36 -13.56 -18.66 -12.81 -21.04 -16.41 -12.06 -16.54 -17.28 -15.02 -20.24 -5.45 -11.14 -22.06 -17.02 -9.96 -10.33 -17.24 -12.74 -21.11 -21.41 -17.4 -33.51 -8.79 -7.94 -15.22 -11.27 -19 -8.37 -12 -13.68 -11.56 -14.98 -37.99 -21.63 -14.78 -17.53 -14.61 -24.42 -25.7 -10.99 -19.09 -27.78 -28.68 -23.68 -18.41 -42.21 -55.28 -41.57 -16.11 -15 -6.25 -19.84 -16.27 -10.92 -15.32 -12.77 -20.48 -13.26 -9.92 -20.89 -10.83 -18.19 -29.89 -35.61 -43.09 -44.05 -38.81 -29.07 -33.52 -26.88 -8.99 -8.23 -7.79 -6.83 -6.21 -7.77 -13.77 -7.17 -8.58 -2.01 -6.92 -4.46 -7.12 -13.69 -15.8 -12.85 -16.48 -8.21 -11.2 -12.04 -5.77 -2.17 -12.71 -11.81 -7.24 -6.05 -4.6 -35.94 -17.02 -27 -23.04 -12.25 -32.33 -25.13 -21.6 -17.5 -25.64 -7.6 -16.62 -16.94 -10.69 -18.98 -14.67 -14.98 -6.78 -12.28 -18.65 -9.97 -33.27 -7.75 -24.56 -14.51 -24.66 -23.43 -10.31 -6.08 -12.31 -21.68 -21.17 -11.63 -27.66 -20.45 -6.26 -9.56 -12.97 -9.44 -25.3 -23.85 -23.7 -22.92 -27.99 -9.48 -10.91 -19.09 -17.33 -11.57 -12.69 -10.92 -21.24 -18.51 -18.28 -18.57 -17.18 -15.87 -16.31 -16.4 -15.5 -18.77 -29.51 -14.21 -11.37 -25.61 -20.83 -20.02 -19.51 -28.19 -12.66 -23.08 -14.72 -22.16 -33.15 -29.57 -22.73 -21.53 -29.77 -17.84 -18.31 -65.12 -48.52 -57.13 -41.93 -39.01 -41.92 -30.7 -30.48 -41.33 -40.13 -36.14 -22.35 -52.66 -38.38 -17.79 -42.35 -41.76 -32.45 -17.98 -22.35 -16.36 -16.12 -10.53 -10.29 -10.13 -15.01 -12.93 -14.66 -16.16 -15.21 -5.5 -9.37 -13.1 -18.88 -19.77 -9.14 -18.28 -24.64 -39.1 -46.89 -32.87 -41.67 -37.31 -34.6 -30.7 -31.62 -26.9 -19.44 -21.33 -34.56 -25.02 -17.79 -16.5 -20.48 -25.8 -14.9 -14.66 -18.69 -28.57 -15.33 -20.92 -8.27 -20.29 -8.23 -12.33 -11.91 -13.76 -NA -28.61 -18.2 -11.15 -23.9 -20.97 -9.07 -14.97 -22.08 -26.65 -18.13 -27.86 -36.89 -24.21 -23.74 -41.76 -NA -11.82 -9.77 -10.46 -9.1 -6.46 -6.69 -17.68 -16.24 -5.83 -17.92 -8.09 -18.31 -9.06 -13.91 -8.1 -16.89 -14.69 -30.63 -12.91 -14.47 -26.25 -13.45 -15.49 -13.71 -20.27 -7.56 -11.7 -13.24 -29.16 -11.62 -10.26 -15.71 -8.43 -13.75 -11.05 -22.32 -39.15 -11.71 -4.15 -4.92 -4.38 -4.96 -11.96 -12.84 -20.16 -24.25 -24.14 -14.53 -8.45 -12.12 -6.23 -9.02 -10.42 -8.23 -6.43 -15.18 -20.8 -22.71 -23.54 -18.61 -11.84 -14.35 -9.87 -26.18 -26.04 -24.4 -17.45 -12.88 -31.18 -24.6 -40.08 -38.43 -31.7 -15.21 -10.53 -5.73 -7.63 -7.16 -11.73 -12.95 -13.26 -10.87 -12.6 -14.13 -13.99 -8.01 -4.77 -22.8 -10.08 -12.26 -19.48 -8.69 -12.75 -16.82 -29.59 -12.89 -9.99 -5.46 -12.92 -31.03 -30.08 -33.27 -42.57 -41.05 -41.9 -44.08 -30.16 -48.02 -36.57 -23.3 -35.32 -31.36 -30.66 -23.16 -20.01 -21.51 -41.15 -31.44 -44.01 -35.24 -52.94 -33.21 -19.66 -31.89 -28.97 -29.18 -23.28 -26.64 -32.39 -31.66 -20.48 -22.46 -28.21 -26.51 -45.46 -37.82 -41.8 -46.97 -53.21 -50.2 -47.65 -40.18 -59.47 -56.85 -35.85 -54.44 -51.88 -40.45 -27.02 -69.16 -58.88 -54.79 -59.84 -39.61 -50.62 -45.91 -45.27 -35.87 -47.81 -30.87 -53.03 -41.37 -30 -44.14 -31.67 -45.96 -28.67 -30.02 -30.56 -38.57 -37.62 -54.87 -31.19 -34.62 -40.84 -38.35 -31.19 -51.96 -31.04 -33.25 -22.4 -75.31 -66.71 -48.09 -57 -43.75 -41.53 -23.91 -36.31 -23.81 -29.72 -32.34 -39.52 -40.99 -43.42 -45.4 -58.94 -28.24 -52.74 -22.99 -28.87 -21.05 -39.64 -22.74 -25.39 -19.48 -19.58 -17.22 -28.83 -35.8 -20.03 -31.58 -36.07 -26.75 -23.4 -13.82 -26.41 -17.21 -32.53 -27.35 -33.77 -30.15 -21.05 -23.75 -36.91 -8.76 -22.18 -11.66 -12.73 -15.4 -21.67 -48.97 -48.73 -48.05 -62.66 -43.9 -40.15 -59.97 -49.68 -47.26 -37.05 -38.63 -40.95 -59.01 -39.52 -50.06 -34.36 -33.27 -53.94 -49.98 -30.79 -44.35 -28.72 -35.81 -41.39 -40.3 -44.73 -43.79 -32.24 -22.41 -33.08 -27.64 -34.49 -36.71 -36.08 -28.41 -26.88 -30.47 -33.93 -28.35 -45.06 -54.31 -29.33 -37.36 -34.72 -39.17 -45.91 -42.73 -42.29 -42.03 -42.59 -23.84 -45.76 -59.19 -36.5 -35.87 -51.05 -44.96 -60.67 -54.62 -51.48 -60.26 -28.98 -39.72 -31.51 -43.38 -49.18 -47.01 -46.49 -50.62 -47.4 -NA -59.12 -51.89 -61.52 -54.73 -42.65 -46.78 -19.01 -28.92 -19.16 -12.21 -11.78 -9.22 -24.46 -12.83 -27.44 -22.64 -NA -14.69 -30.6 -31.46 -17.6 -25.6 -25.46 -39.97 -37.58 -33.38 -19.57 -28.34 -11.48 -12.71 -10.42 -9.47 -16.49 -13.65 -13.5 -19.24 -6.13 -17.33 -NA -20.33 -32.11 -10.03 -12.32 -24.12 -25.82 -15.93 -24.86 -15.77 -13.47 -4.3 -6.4 -12.47 -9.56 -22.68 -30.68 -45.73 -44.32 -21.48 -16.32 -15.48 -21.77 -24.36 -34.55 -19.44 -27.75 -NA -19.9 -30.11 -38.81 -27.64 -23.01 -29.69 -21.16 -22.68 -25.8 -30.76 -28.37 -41.73 -25.14 -20.19 -25.56 -23.03 -20.79 -43.39 -37.69 -24.49 -23.72 -34.76 -28.42 -40.6 -32.25 -26.37 -48.18 -38.42 -35.44 -26.56 -54.1 -39.47 -42.5 -27.41 -25.99 -16.57 -10.2 -11.1 -17.53 -10.51 -14.5 -9.07 -6.73 -10.21 -27.88 -23.34 -30.78 -19.42 -10.75 -23.61 -14.29 -9.15 -7.68 -6.79 -14.01 -9.28 -17.97 -12.62 -5.31 -10.77 -16.99 -31.23 -6.09 -7.48 -21.14 -11.54 -22.6 -13.82 -9.9 -16.31 -19.08 -29.38 -26.11 -6.6 -9.1 -7.79 -11.49 -7.63 -6.33 -6.64 -14.24 -8.19 -5.6 -6.19 -9.1 -8.39 -18.42 -16.75 -13.16 -21.01 -13.4 -7.37 -9.74 -10.25 -37.11 -29.35 -13.57 -16.1 -29.75 -22.81 -23.17 -14.13 -20.16 -23.15 -18.69 -17.87 -15.3 -23.49 -25.55 -22.87 -25.8 -17.32 -17.43 -13.74 -18.62 -23.21 -14.32 -19.83 -38.16 -35.44 -15.56 -22.42 -51.33 -NA -49.37 -56.34 -34.11 -59.83 -45.33 -21.65 -16.96 -18.5 -14.48 -10.18 -25.27 -19.11 -7.52 -10.05 -11.41 -9.6 -11.62 -9.73 -21.62 -9.95 -13.28 -14.58 -31.69 -20.9 -18.21 -8.81 -34.04 -23.57 -24.29 -33.36 -14.92 -26.32 -33.15 -16.93 -13.52 -19.87 -19.24 -27.96 -22.41 -29.95 -14.06 -51.76 -31.99 -33.31 -39.38 -22.95 -49.2 -37.86 -27.6 -22.13 -21.59 -30.21 -18.67 -21.99 -11.69 diff --git a/modules/Functions/lab/Functions_Lab.Rmd b/modules/Functions/lab/Functions_Lab.Rmd index 661f8054..81ee2193 100644 --- a/modules/Functions/lab/Functions_Lab.Rmd +++ b/modules/Functions/lab/Functions_Lab.Rmd @@ -14,14 +14,12 @@ knitr::opts_chunk$set(echo = TRUE) Load all the libraries we will use in this lab. ```{r message=FALSE} -library(readr) -library(dplyr) -library(ggplot2) +library(tidyverse) ``` ### 1.1 -Create a function that takes one argument, a vector, and returns the sum of the vector and squares the result. Call it "sum_squared". Test your function on the vector `c(2,7,21,30,90)` - you should get the answer 22500. +Create a function that takes one argument, a vector, and returns the sum of the vector and then squares the result. Call it "sum_squared". Test your function on the vector `c(2,7,21,30,90)` - you should get the answer 22500. ``` # General format @@ -73,9 +71,7 @@ Create a new number `b_num` that is not contained with `nums`. Use your updated Read in the CalEnviroScreen from https://daseh.org/data/CalEnviroScreen_data.csv. Assign the data the name "ces". ```{r message = FALSE, label = '2.1response'} -ces <- read_csv("https://daseh.org/data/CalEnviroScreen_data.csv") -# If downloaded -# ces <- read_csv("CalEnviroScreen_data.csv") + ``` ### 2.2 @@ -86,9 +82,8 @@ We want to get some summary statistics on water contamination. Use `across` insi # General format data %>% summarize(across( - .cols = {vector or tidyselect}, - .fns = {some function}, - {additional arguments} + {vector or tidyselect}, + {some function} )) ``` @@ -99,14 +94,14 @@ data %>% ### 2.3 -Use `across` and `mutate` to convert all columns containing the word "Pctl" into proportions (i.e., divide that value by 100). **Hint**: use `contains()` to select the right columns within `across()`. Use a "function on the fly" to divide by 100 (`function(x) x / 100`). It will also be easier to check your work if you `select()` columns that match "Pctl". +Use `across` and `mutate` to convert all columns containing the word "Pctl" into proportions (i.e., divide that value by 100). **Hint**: use `contains()` to select the right columns within `across()`. Use an anonymous function ("function on the fly") to divide by 100 (`function(x) x / 100`). It will also be easier to check your work if you `select()` columns that match "Pctl". ``` # General format data %>% mutate(across( - .cols = {vector or tidyselect}, - .fns = {some function} + {vector or tidyselect}, + {some function} )) ``` @@ -118,16 +113,14 @@ data %>% ### P.2 - - -Use `across` and `mutate` to convert all columns starting with the string "PM" into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. **Hint**: use `starts_with()` to select the columns that start with "PM". Use a "function on the fly" to do a logical test if the value is greater than 10. +Use `across` and `mutate` to convert all columns starting with the string "PM" into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. **Hint**: use `starts_with()` to select the columns that start with "PM". Use an anonymous function ("function on the fly") to do a logical test if the value is greater than 10. ```{r P.2response} ``` -### P.3 +### P.3 Take your code from question 2.4 and assign it to the variable `ces_dat`. diff --git a/modules/Functions/lab/Functions_Lab.html b/modules/Functions/lab/Functions_Lab.html index 95978ffd..b8a6647e 100644 --- a/modules/Functions/lab/Functions_Lab.html +++ b/modules/Functions/lab/Functions_Lab.html @@ -356,15 +356,13 @@

Functions Lab

Part 1

Load all the libraries we will use in this lab.

-
library(readr)
-library(dplyr)
-library(ggplot2)
+
library(tidyverse)

1.1

Create a function that takes one argument, a vector, and returns the -sum of the vector and squares the result. Call it “sum_squared”. Test -your function on the vector c(2,7,21,30,90) - you should -get the answer 22500.

+sum of the vector and then squares the result. Call it “sum_squared”. +Test your function on the vector c(2,7,21,30,90) - you +should get the answer 22500.

# General format
 NEW_FUNCTION <- function(x, y) x + y 

or

@@ -388,8 +386,8 @@

1.3

Amend the function has_n from question 1.2 so that it takes a default value of 21 for the numeric argument.

-
-

1.4

+
+

P.1

Create a new number b_num that is not contained with nums. Use your updated has_n function with the default value and add b_num as the n argument @@ -398,12 +396,12 @@

1.4

Part 2

-
+ -
+

2.2

We want to get some summary statistics on water contamination. Use across inside summarize to get the sum total @@ -415,34 +413,40 @@

2.2

# General format
 data %>%
   summarize(across(
-    .cols = {vector or tidyselect},
-    .fns = {some function},
-    {additional arguments}
+    {vector or tidyselect},
+    {some function}
   ))
-
+

2.3

Use across and mutate to convert all columns containing the word “Pctl” into proportions (i.e., divide that value by 100). Hint: use contains() to -select the right columns within across(). Use a “function -on the fly” to divide by 100. It will also be easier to check your work -if you select() columns that match “Pctl”.

+select the right columns within across(). Use an anonymous +function (“function on the fly”) to divide by 100 +(function(x) x / 100). It will also be easier to check your +work if you select() columns that match “Pctl”.

+
# General format
+data %>%
+  mutate(across(
+    {vector or tidyselect},
+    {some function}
+  ))
+
-
-

2.4

+
+

Practice on Your Own!

+
+

P.2

Use across and mutate to convert all columns starting with the string “PM” into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. Hint: use starts_with() to select the -columns that start with “PM”. Use a “function on the fly” to do a -logical test if the value is greater than 10.

-
+columns that start with “PM”. Use an anonymous function (“function on +the fly”) to do a logical test if the value is greater than 10.

-
-

Practice on Your Own!

-
-

P.1

+
+

P.3

Take your code from question 2.4 and assign it to the variable ces_dat.

    diff --git a/modules/Functions/lab/Functions_Lab_Key.Rmd b/modules/Functions/lab/Functions_Lab_Key.Rmd index 8591cbf1..378c1f28 100644 --- a/modules/Functions/lab/Functions_Lab_Key.Rmd +++ b/modules/Functions/lab/Functions_Lab_Key.Rmd @@ -14,9 +14,7 @@ knitr::opts_chunk$set(echo = TRUE) Load all the libraries we will use in this lab. ```{r message=FALSE} -library(readr) -library(dplyr) -library(ggplot2) +library(tidyverse) ``` ### 1.1 @@ -104,45 +102,43 @@ We want to get some summary statistics on water contamination. Use `across` insi # General format data %>% summarize(across( - .cols = {vector or tidyselect}, - .fns = {some function}, - {additional arguments} + {vector or tidyselect}, + {some function} )) ``` ```{r 2.2response} ces %>% summarize(across( - .cols = contains("Water") & ends_with("Pctl"), - .fns = sum + contains("Water") & ends_with("Pctl"), + sum )) ces %>% summarize(across( - .cols = contains("Water") & ends_with("Pctl"), - .fns = sum, - na.rm = TRUE + contains("Water") & ends_with("Pctl"), + function(x) sum(x, na.rm = T) )) ``` ### 2.3 -Use `across` and `mutate` to convert all columns containing the word "Pctl" into proportions (i.e., divide that value by 100). **Hint**: use `contains()` to select the right columns within `across()`. Use a "function on the fly" to divide by 100 (`function(x) x / 100`). It will also be easier to check your work if you `select()` columns that match "Pctl". +Use `across` and `mutate` to convert all columns containing the word "Pctl" into proportions (i.e., divide that value by 100). **Hint**: use `contains()` to select the right columns within `across()`. Use an anonymous function ("function on the fly") to divide by 100 (`function(x) x / 100`). It will also be easier to check your work if you `select()` columns that match "Pctl". ``` # General format data %>% mutate(across( - .cols = {vector or tidyselect}, - .fns = {some function} + {vector or tidyselect}, + {some function} )) ``` ```{r 2.3response} ces %>% mutate(across( - .cols = contains("Pctl"), - .fns = function(x) x / 100 + contains("Pctl"), + function(x) x / 100 )) %>% select(contains("Pctl")) ``` @@ -151,15 +147,13 @@ ces %>% ### P.2 - - -Use `across` and `mutate` to convert all columns starting with the string "PM" into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. **Hint**: use `starts_with()` to select the columns that start with "PM". Use a "function on the fly" to do a logical test if the value is greater than 10. +Use `across` and `mutate` to convert all columns starting with the string "PM" into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. **Hint**: use `starts_with()` to select the columns that start with "PM". Use an anonymous function ("function on the fly") to do a logical test if the value is greater than 10. ```{r P.2response} ces %>% mutate(across( - .cols = starts_with("PM"), - .fns = function(x) x > 10 + starts_with("PM"), + function(x) x > 10 )) ``` @@ -176,8 +170,8 @@ Take your code from question 2.4 and assign it to the variable `ces_dat`. ces_dat <- ces %>% mutate(across( - .cols = starts_with("PM"), - .fns = function(x) x > 10 + starts_with("PM"), + function(x) x > 10 )) %>% filter(ApproxLocation != "Oakland") diff --git a/modules/Functions/lab/Functions_Lab_Key.html b/modules/Functions/lab/Functions_Lab_Key.html index 8b09e46f..6c7f0721 100644 --- a/modules/Functions/lab/Functions_Lab_Key.html +++ b/modules/Functions/lab/Functions_Lab_Key.html @@ -356,9 +356,7 @@

    Functions Lab - Key

    Part 1

    Load all the libraries we will use in this lab.

    -
    library(readr)
    -library(dplyr)
    -library(ggplot2)
    +
    library(tidyverse)

    1.1

    Create a function that takes one argument, a vector, and returns the @@ -444,14 +442,13 @@

    2.2

    # General format
     data %>%
       summarize(across(
    -    .cols = {vector or tidyselect},
    -    .fns = {some function},
    -    {additional arguments}
    +    {vector or tidyselect},
    +    {some function}
       ))
    ces %>%
       summarize(across(
    -    .cols = contains("Water") & ends_with("Pctl"),
    -    .fns = sum
    +    contains("Water") & ends_with("Pctl"),
    +    sum
       ))
    ## # A tibble: 1 × 3
     ##   DrinkingWaterPctl GroundwaterThreatsPctl ImpWaterBodiesPctl
    @@ -459,21 +456,9 @@ 

    2.2

    ## 1 NA 304029. 256802.
    ces %>%
       summarize(across(
    -    .cols = contains("Water") & ends_with("Pctl"),
    -    .fns = sum,
    -    na.rm = TRUE
    +    contains("Water") & ends_with("Pctl"),
    +    function(x) sum(x, na.rm = T)
       ))
    -
    ## Warning: There was 1 warning in `summarize()`.
    -## ℹ In argument: `across(...)`.
    -## Caused by warning:
    -## ! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
    -## Supply arguments directly to `.fns` through an anonymous function instead.
    -## 
    -##   # Previously
    -##   across(a:b, mean, na.rm = TRUE)
    -## 
    -##   # Now
    -##   across(a:b, \(x) mean(x, na.rm = TRUE))
    ## # A tibble: 1 × 3
     ##   DrinkingWaterPctl GroundwaterThreatsPctl ImpWaterBodiesPctl
     ##               <dbl>                  <dbl>              <dbl>
    @@ -484,20 +469,20 @@ 

    2.3

    Use across and mutate to convert all columns containing the word “Pctl” into proportions (i.e., divide that value by 100). Hint: use contains() to -select the right columns within across(). Use a “function -on the fly” to divide by 100 (function(x) x / 100). It will -also be easier to check your work if you select() columns -that match “Pctl”.

    +select the right columns within across(). Use an anonymous +function (“function on the fly”) to divide by 100 +(function(x) x / 100). It will also be easier to check your +work if you select() columns that match “Pctl”.

    # General format
     data %>%
       mutate(across(
    -    .cols = {vector or tidyselect},
    -    .fns = {some function}
    +    {vector or tidyselect},
    +    {some function}
       ))
    ces %>%
       mutate(across(
    -    .cols = contains("Pctl"),
    -    .fns = function(x) x / 100
    +    contains("Pctl"),
    +    function(x) x / 100
       )) %>%
       select(contains("Pctl"))
    ## # A tibble: 8,035 × 23
    @@ -530,12 +515,12 @@ 

    P.2

    columns starting with the string “PM” into a binary variable: TRUE if the value is greater than 10 and FALSE if less than or equal to 10. Hint: use starts_with() to select the -columns that start with “PM”. Use a “function on the fly” to do a -logical test if the value is greater than 10.

    +columns that start with “PM”. Use an anonymous function (“function on +the fly”) to do a logical test if the value is greater than 10.

    ces %>%
       mutate(across(
    -    .cols = starts_with("PM"),
    -    .fns = function(x) x > 10
    +    starts_with("PM"),
    +    function(x) x > 10
       ))
    ## # A tibble: 8,035 × 68
     ##     ...1 CensusTract CaliforniaCounty   ZIP Longitude Latitude ApproxLocation
    @@ -575,8 +560,8 @@ 

    P.3

    ces_dat <-
       ces %>%
       mutate(across(
    -    .cols = starts_with("PM"),
    -    .fns = function(x) x > 10
    +    starts_with("PM"),
    +    function(x) x > 10
       )) %>%
       filter(ApproxLocation != "Oakland")
     
    

pHmiVSm^!;>?A9w%Y@ty39aIE&erVp1$B!}uy@D^wVFPqP>IEiXpkVpZ z!X@7%7(|DXU`tttYh9rFE`_-w!TBz6>Wxmr_|5Am>jKQKJo&`mxtO;HZ(K+|I=7y; zl+55fk->z3_)QXtYew~&P|MBmQh8(waL4jLQ^==d6ASa|cSUqLd7=fOwkNXx_f$f~`eP_%O9Dw8%7>H75guzTjc zu40<7iX13i1W8U}v~i7n;w?}!CMe2D{UjHGA#=Dyh4mXw!%@7;L=(Ge&Cx zNl+CgGrp6hXOgD$;|&h{{3^+h)b#w`ot;P|WdMdMb(}ucLd<@xWDKQK>9R+oJf) zE_{vv2d;1U#@J?3IFj9U@_i}FiD1#BExSLWM5j#GY=-Aa!YeDo}Eq|gt!=5(x4g2Pj$a;=x z>QSFXqPd!N7k+7`n3x>BQNHEB{V?v98#m}wK)B@7!`V+u<>|lZVd#G_k+*Dl`#~lN zNT+YSdGVn1^u^Ijqo;`m?`BDs%u2F1?SA#?*+Eh3K1BAXw;svtO?{E|UZXr~ckaDu zsPOT{VZRGrf$^0S=ApYcDUrCo0`BP{N8VWri*w-1?!Hu}b zy*BZq`K>E&RLNz6)~-x6^2W8rz^B!8?-eVtEo54T18is7EBBDLJIwEqnF3@UQ5%QzV}- z>K@uIFL+!_XbcD?8TuSV+rH&vH^w0b&q#yUc}E9zw+eN8pa#;YfrTZy;}d}Q5L|n7 zi*?P?t|VhW=z;Lg_^XH!zyY(UZiK-{P9E7p5dsqZkdA~ZqWBbb ze~X)+HNC)PPnc@Wt#mZBu657o)}@8gubITK6a@Ni{uDcC>r;SNyQwApQd7257i28t z8%AMk-c6L>=HYYI>$4$_R5Ku)q9$J%^AH*R5Dpmbh@h&6Hc(HB z`ouH9RQCo{BK^88Gl?v+k}RV0E~bl^x@-7@Z|r|K^)9vxPSLF(QG4Q@*9Xgzd&+`_ z98?>u2i!rJ10jz`YRBySGI}7z9}LARrCa;BK~NW8lOBwBBX*ZYY5@4qsFa*a{USSy z^L9H+;N3fAV;DmW4FedFY6ExJ6Cn)^Sov{1u?J@D4Ybgwu2Jra@pv=c2$2Mk9J++a zL%4?@6=k_qcn6!`*pIM14G|gey(=*a+Pg{KXOmUa_v#8YF^BW5Cp>>)U)P(T!HFh( z4rq&U|CrwiV%f05kOn;Xz?1)|4K6+-@F&$canuvm=#5p2lLRE3jHXr~U>>2Pu;`Ey zfsshwv-vR8H-mN_vi*wwn?yO7{V7J~f~horHXLHKp7ZSwP*wmx)}LYd@B~XK_d+o} zgX>lx$<|I^OKVSrTSzP|eP|RKyvU}fVLJHZ_k$9H|DFPJ8fzje|HVD$n594B!63f^&cq}v#F-9B3?9t`%2R4I8E&`z%+#FKTDrq|x-u z(T2p;`LbHzB4KHiesRWm?ZC#zckfpB0c(A_di?))nrtnCNFdh0AZ$#jcZ8C^dLTy)4CRu7f zi$>5~EWw{Du&$AzFLCmmKXSbsh+t&#M%At+Jk?33+3}-Qm>YC4(l=PfV5d?t^eQtl ziyY<_^7}HYO9b&tU+^uKW{|I(0OKVy)VcPSJ2f%aBg*rrN4QUhAUylUm%1Fhs-;-*696Z!YmvW(skH3x%KL-(YqrN;!QpfX0W?L86>HY#KQA<;_3C; zr2N|G>V~D=xmpLAigA(6X`i25c4=egJv-R=Do>yeI3nQHCe_L#^E0=LLIKhWU;s-} zot#(CWZjY9sX-ce2Wd24W^17HVeVcnsu>>#pW7dYRM+l~6%QB+#mL2VGWr9tQ^+Uu zzr4vT{{aBH$i4vpZcGq-5H_|{8gdZ9)J#ke(^M*Q5aEADFsV1mV1cQZ_@*E%!pfJxb z2En5ptd{`zr2JBrppRUG;L`OkjKsS`xvgxYY_$TG7SZ1pb)yb-$tS`kWGqA4Gs`8L zcKR}HlXv_%$)4_jwCZQ#h_GI78yY@WKENhler)XH*X>89TgB2)dE$ru@u9DDdn@g(C6VoOGU_4?wF`|t(}o3Wv4kU|h+ zh(+-!@eTnwom(`WqqHhX27!9w^J!KgndQH~kd8zHwK#v$22UV0xGOydw>#8rz5w(n z@@A-Ow`}R?b5-*0Qx*M?1)mZ@3IXK3&?NMS^oZ+b4yR?OJm|m8A4>`u=+eWyLVVnx z%E}(53chue@0|zGze}6vmdI1ZkSoe4L=34@lF>*ttCBc`lLA5}u}KZ5sTngZU-ytNr!W#i@M#HalakbXLY-j@zgKm3+d|Cn_q z$#7uJEmfz5F{FFAKCU8_F-wQCiV07Aa0d}pmlkOtb(&fo`OQa#W)&SKWnns$Z74aR z?CgZ2(#%|(*UHomwx#Ez;&n6tn0F12`-Za-fO zdr42rezp0En-No%@~^izb&&xCyJZp&L>d&By(Rt__#tkltCYztDU3Z2db~RA_I~YVuJ|1y z*lnf8Kvwc0+Tp_m#?DkDbo*Z0=B)Yr@d82u)>gFF16=UA&~K$0q+s{POFe7E!#p>9 zG*BzaRJ)6~)Et3&&!>Sz3ey7wNzGyCJbxOFpAR~jPBXF=2)FD;D;!wbBVNxk7BRWg z23{&KB(G8=A~Gsk>2$sU`K#hG9vvnpXT+sBK69QdUUS@v(*8{5T&TThOiBtACw7jM zR-7h7uwf%dry?oKjCDwez`%8YMO1`ddJ#xa&gXXKh|%r%*=lmuZ|DGMyR~7rQ*0Q7 zhL4Ru{QcoWQ}sJOGxs02jL<(LkdW8cwlA}8>^&lmhya&Z!uP-64|?d6#S`wsSlS<- zub0h&-v0F|&w!SAg$tI3be8HH^fx zevhC?-alokfK>wzJpfIg-EtMNoQ)U$;`|jy>+%x{!rbyMe4fe4xU%FeDpd>aYt2jz zvi+FuEeQp6Ahp1gufKotdrW;^aXc_&`uKTEW{JttG^;+EPRXj4u(LgcARa)JRH(G? zAN&y!*15-(!&fWmAq`pUEEjFQ~w%zl2A6piv z*K@w-cvrR7V4wAe*@$H&rcQD=5y>>q*ej$28DBZ=_BGXl5kR3SDgoA{zI&SCLIa;0 ztH{YdP*DsEIjJ+=C%v5G9F%;>J(@_K_YvuN_371Cy69=)p^Aq(nU{j8U)xq0&e|yA zF@u=0K(_aoXQh&n@)X#_cAA42>6&+}ql<;|tB)8=tY@eae|cjJxk#9zj;QU=Fr}*n ztox210?3Zf)aA+9q5(znD`Tc<^yIH~&yOACpvZM+ta64_-tlB7%FVk_GGN>yIi4q%*1Atr)8HnxbraO1A$G=N&~|KFmf>bx2>f1hApl*oX<{88sVwCdpa%=R;>y3={HFReYP9IG9ll7 z{->sxR+Azv4DwQii}i@YchgBZBgBA|qQXk%aHuFg~1I7(3EN+l(VC}Bd0&fHw0+}N+BTd^yc{$G4NNr(!d z!W13@Ve1~T7B`M8S5X7oB0-Gi(io^IP)3W4!*SEO2om3Y6pa;%v07xa`ieLueNK z+@J9U$c}2CbET@a-)?P-mM%|@UkBMt=kM>&wmRBh$5rhg6|I0aUAW^moJs%GIk4@r z$A=Tl^IH=$jh2nY*1Ydc?lRmaAApv?)t*4xykObYhoK2vuvODngTO4h*T&A$IMzjZ zs=)d?&?>UK4suou6!8_1OK4u%%4e~!O;aqLja?~r$;xK+#<9N6JHf?^uGTfY(ZFuw z@^Z~ytAz)>jXsy5Gc?|XRRAYZ*k>lrXP!-=1E0|oo2A)4qc;p!d|`4cCcuSGij}7> z40n?i70#;SG2&$dICQ z>8Yt)5d7CEffusA`7Dd+3_z`j(`XcTpk>&8m40-$=_Tcd^KMW(<3l&H7XA+nD?}U( zis)*OYc~)h7A7I6E?t$_B*c}kDzUzH*{7_=3iXJi@$$1vocHz%rRY8{YF?aiKK1Ay zALn~rl!yfc!WW$@R|!HVS-`0@(-|L9C@cEl_^X{|WT$&=wtt$xmI3$yAFda+)>g5? zFnMMTb9v`{Qh`@JZ;#b*PNi@*6y;$qL_VLkt0VKS>iI&xQDmAs`eVO`65vskI9BBl zD5DH>DV{YVeKv#m{yfgT`!*q_PV|DuHQkYV?jayiU@D6|beYYv9B{nhGjN zp}3G(Mcau+nB!mBIshVUjS+rjg;qwHjpA~qyDns^2|P1NGnz>V*uX8+Enj*B2KtXh zhv;T<>C1q9@u@v9aK&lKT{amVPy~A>V#7HFa?Xb6K%MFDuUjAVF7P1z3IS%yn_J6a zNpoQ7ZR_)EdSD=x?ND=ovsrBe@U0pWwTvJ^*m(OT8J*G|l>xYM54~9#%@N3s!>t4pH~rB4*!anCDt*o%|uW~o6r*}4R*;rvrVlXlX?go3S6U#!ZAH;8e>ea zrl9CMe@&oa&<=b*`sdU9+_6`sIi})KW_q#)VcBq2kxiy|WLn;W+{^{eI5Kbrej-S! z`xxr+#JPaUCcvh+*yG0FuHt@9n`%lYp-lJ<`Kv`vy_Cq`VN}(wsVovA%qH%F*RWFh zhMm!m5^Lste^D{Qk^O0AMJBA#_AI1$8Y~*D$=E(Jr?2Sy=f)hn*$X4O4nw$yxpuogzQq^Xw4Tdu z@MFMv=rn~DfnG0{1xZ?hXL90NSHLO>r=y94enDF|yjd)jzEL#-bc%EDxm1=<3b^$o z`mebLQ)vOp#dHw115Q?f@)Z3%V#`Q<<<4}==Qhh+aLlj zop~w=ZWauY*odKFD(u1dM+l`yH>H1%b<_R0j=k2u4zKD~`0FkfMOZgIXHd&yrKzG# zGH&#P`0>Pz9d`Bo%!8}fR-T#$9{HS9vHMP2!b0DY^hu>?zD)UTKtpxlR9G#*#P-ej zyemmskfiQ|@V#0QfcnI*BQS5n!4%b5e(J$H+nZG5GMvtA zK|5hcy53z90|0MBKei8>=M8!{=O)}1WXu>%8tJ1}s)L{;&151eMBDoBBRgc{_Qv`9 zw=c{uiT(tdY6b#Hj8G;z;+{cv^0jY@gyZaA2Tq2;b{Sy^maA0$bLN|`W_OiNsy~p; zWr4W=Q%qCK>;5k(6oj4gUyU??o#nr&U|LhQ|5D{D-GWOcGLxo)MFG`WL-K-|!vJ4x z*(jn(Mi$;6qJ5Cis%_h;8e)xwX9w1ABZofl59~>xmi)A`;DN5P`V-# zc7zsIHPjVEqnyn)C)Hfnp6P>3u^CD!cs(b@4<;qZQ4V>J=kb$1ad{uYUB%I_` zkyHSFCLMCRIKNsu-N&?(vs?4cOK!i}Mk}Eb9_nD(zsMxGRe73UzCPBCg=KbgIWYdt zdYxjQ5n-OQVB!<|Ntn?iwgiIP_AaWUr`NUh>0J@!`E-8lx}g2FE#~rJ=k((GV8}4D zq)#AD~`z0G-yZG#56bfagate~P?rT{cz4t0*^VfFt zJg4)D@O&MM@I5u9$*!OXdY6rt=v0L581}N3$TG+0>*;p=f-U&-BSf61q2^=i`eHfs zlNbI*>uL)wIyQ2{lfSch#OC68Q*1vjkxyIIeU zJ%Av{lZ)W+Vm}2TI0+wQ?U;UQEFnv%a(M|0sQ z{xI6bt3Y#QHnA%nxrGQ+8@)Q{3w9O2BWWQEp1jr|d(O7@Av{|FKXSA)XtE(@apOG* z&Zz-b3)UM&J8?GyUOTWUaHWxY6(blGZ12}aq%%VDFqX>(L0skV-aGnRRt@#v2*&GX`^kd4vQq=7w?pk4m@Kdxhl&#ju-s-SuQNhzxoR8bM-cU^qyUQ)dK7UN}mL zF(V}Ia6;HbEZxLBxFDY(Ws@R+HhR>LOx5f{uzT5rIY~5qS}$$aPT%{oeHL1t5@$*k z#q1)&cmy!Q0Y*?Q8$mD>6hoE2-tm2I#DON#spmJ-^THj}U9k1Fz1-6=zl=B_*8^nS zJfMm-I~tr%jYRPbqYV%YmisvYxA*Opl_oTS zkq=6wpzaW;#(pG&R@P^v_|Jg~)@~(?Gza9n6Dki=YmM3oE43!tS-B0OJlapN?DL+|r027#@Ovf_i!*1lV@<)KD}FY%j>` zA>FKn@g>-l%-Oh-WNKwV%m=E4idFgL#7;@dg)03{3Ea6VJ@^3B^gKgU-04LKvP362 z)A-dyK?!fPz&=vZ2rGys}~;)`f7z$S=Z}bRHwdMezbJ(2W8rY#gi;CHV)w zO5ilsVHBhEDH0=B4%7C~*r>How$><_sG?y@7`{o0ic2ZmBFyvWl5i9?uAR}?!~hdr z5ZO=fgLJ}{`S@FaIO!81{5@0I_s4Pj$9R>q^e12aJ$@ndPU9{Kfs9xG7|u0`fYkJ6 zD~bOHZmXVJ%R~@u!MROsuSNLg`8KMdjgefPGXvY^80G0NElTbhv`gRIWN`XHcA}H} z{&sdQtbnGdm88jfL%BM{B>C*DVfj8A{i95Ln(PEQjuZg!F=UNKq{xJBD^oB*rOt~G z-r4j~Fc~A#jgn%4{u!nWq000-nQj=FW&(G)oW4rTFt~~gvIxh0N3tF?*z<*MSix7U zYWzN{`n$@_QUsNvwHdgQ7f6XZmrF_fj7q$rwN;{TiE1Hrk3JM%l^1a}`#-0DnIlut z>%(^)v#{1ZifBB1R8uT5D8CTPPq5bZB?n|Qub68+_b2PA1-Xm3LA(&=IErdIw)bk% zl_pH5JW031kv(~;U}shRpiPTIdDh5WAM3o`c6|wc@Io1ob9?EHpS*tdJ&oA0$#k3Q zI0kTH-G!v?8G@juw$+0n|3?-Pq6n zyP97v4!5V1vFPq?!1*a;Diq)Z`NIzyVe*8(81S;tai)~Q1d8Q|V&g1PcBA(2k|ZMY z(?Z0IV1clp~Wt8rhn6LxztB|I&k*^rZIgp;M}N%`GIwWm&~JP{6M@=J_fHpOZf@}%KE%$s2KUXX=GcOVs;mg_W;qN?Z4Ry~C()=A zS!!;(z+3EfR{KqDuH8K0CPJ9kzV^|Qt0)bes!;csY$+KQJJyS(vRXpE5(=AI*C zq&1;l^&RT@!nXSh!y1(FxwzqA(cwcV<%&Lpe?hqNc`lm{+F^Zu0~i9ZRSRlItwA1Zv}8Y-nCX%(M2|FXU__bTL&8Voi8 z(r9S)S4?G*M=ic#>Idj*mTL#JNYVMUp~``;7@c+%IeuS=E$FuejoG!~7gAV=H+HY2j^duq8qY( zGSApx!S6JG1&f$iJ)%Vbm#qK}xOv-|fzsPLmn$o@yRD(`KL7hZ_a{V7dXZWQ#qIJL zv|GtWaRunq&SCe=;mmsbJcdOXrWC6{v$3FkT_LupWgZ zQC$3H?xfB5diHCs?bnQgPgG3PG=7(zj;9?O4_1hK2KOTRlTe$HF(F6rp9RCRSZt04 zZGoAs4?a2vagGC>vhzLIqnHyPw<6|2iDwl|0T^=r|~lcOWpeYNR(*x<7jB$vD$6u zD6}gQ>2PyZ2Z}+EbSIH=#dwhE<1_#(@-Q$Le5m$`F~49<9bwnsoXwip9g{+5uQn&x zLyXPX1VaGD$VjFq&fockjEVWRwgVg$bIKXq_yZtpGO6(mDT|!h?-2=Ke`k!)^gdR>v3}=^pDeZ~7cOTRzuL^m6?t~}utX|fv}Lx+ z;r0P+>MRT727}Hq+cJ7G@cXD}1_gN>=*HUu3cwQei?=497!^ds@Knck3bI1a(=EUf zOtFkRK$iK*gG1*(b0pKQNliZ!IOi%$?q3|rR~JX9!c_EzI1HDf&gWVQ;+3paqaZzq1@dl&`-gr^*){ z$3u}77hCpsT93!?xqHV?*VqjFRQfUXQ6_NPjk$Ju=?9_c8ftE|t@aQrHqX&*UhKPR z-&q)0d6Qd!kv$Z@16Ze*6#?^!r)yvKRG{h9(9z}KFlFd^YA`!g18c-xcOp$)YXB#o zD;w#~HDt~!O-so=iw0u2*0n>jm;C9Udj$;b{#QIUYS9CK{p?rxb=Rupxn~wFIT^=q zZJL%Oz4Xn(_QzmI-#7>mT!CEOes3SelGc7NLQEB)M+llXVien~-Ep^EdaX%pjet?w z$bnxuC=h*QbV(84?wZxr7gTHjt_pls{-Lgv&sBi!=k3&#nP1M~0UupE+R#U}m+1$!{Ns;*gELZ#aJ4rx5I}I9!X*xFgb|1*n#)9FVKAyhR{0!yc72@r^qzG zLz_L1;})Z6sn<`Jnag&wPi(XPv&|G_H+_1=%V0^GB-64C_;yp0OI;!=%w0&lV~e%R zCvV3`+)YC!Q# z6Wx2EmlZ2Rr=eW2xq*c|NU++hyQD9G*J1aBFR!P1Zh0v@f=h^FiVN2ulg0Fsricd* zV6a=Q8!gbG8Ku;-eCkobumGb(fHcD61?ArsB^BXR(x^w+V=&+6W=xZvebmPfSLc<*q}-C3|UZI8ZIcK7<#17(! zUYJ^9G1bJT=^6-FTFK-StzbdPN=`V#p-mPc(JUIv9#|!|xj$ytu@(W~U;U6JxgExu zjfj@+hHKWcE>6aolZqzCf!q)qAHI9r#QbyrOSW9;PS`GM<@ktB3~lh~pu`IHY{Vkh z(aV!>_a8| z`#rt-CYAZV_}=yLW6_x(zX{QsoR;R{F7T7iD&}hVS9VhKVu?ZfiGP zZ!I}PvQ`jHCU?LO3h`|S__jcjJ`y`n;xE4T`1b1Hcel5)V(R(&>D%ftb^HY=07C8+ z0e*O!0qkwvy1uf+e6PDuQms)6X+EYtnGcD7CaQ@r65i9-DhNGZ!fBplKcI9$f3Ld| zu*^6aOOP^4Mt+au7MYegcre6*Dor91-V4{CGMH{q#6J=Ls>oJrAmE|>-g2CSfo1*4 zSY)guRk!8vh)GrIwp;|Pt0VacTM0J;-D{;4Y+ zA6xbhUNXmjcJ{t=mzWK{ogK53u_v%PE%*UGHgb^E4c7#kj(alIKEuO2ow)Yj#58XJ z-LK=l1AAD3>tK&puU=yX9uru?KMXBE{R{53;R9<1Erg+6vO#s(-I>J`bLX}tlOqNtdIYAb9{3k(~l7!^Slc$Gn6sT`tClY?)toyh~k z;<%Mw)JpcF8qW3#aVn74s#la7$LEiLbAzHh$usTKs?95?9^4S5dCx%Si6J5Lg)$R78sBC00+AEJ%*>gKp9)saQ+ zjeh%WeN3f{rszjqhX(Q}@@C4{o%as~3D0mh%Gq8j;!U2#{TLfr1o%tm zZro*n2$Q9_)0pHoS~T ziZyvros|}(Y-Fd-I?7mwG75jaNbl5mX2)ZTofJYEQQaE&J6FvB0-w+#4MD+n&%d?` zox!UyS>&WcnN}A{z4+VNuhC7H4wHI2sxm zBA?0KWBAx=tVq&Zg>(od*FBxAd?cpM!$iQo0YDFV@9kFY{?Hu-bVrfa_npvr!?Y9m?Kp$XQ8j1Jqn^)>|`o*%40HhL;t{D^j}Ms1_SwT6QMo8Po@R#f z4}d?IYEmqHxt7QD_VAD}l4qvu5%cigAAZ};ZEQMvr6MSnmJ5%lR-l)`w8AUDjfXJo z4xnc=GJ7!LMwwh;%5d36unYYQEI%q(`agKnKcjyv2sr;u-b$5r|Bn#~fQ6Oqzovhj zHQNob+ibl${@EuyZZ9A)KlPYEJ}`3-;H&R^J&FVj$?r|Kl)}NHL2Sv&`1bHmfjRCD zCq3>2a=NcvP{?b@olo5O&4ZF_rx9LjcRt_qJb=f`Iy}7|pEG;Sn$K$oBoRm}&2IPS za@WnaYcAkJ#S};!C4xRc*?_-;zoUKdkV*{grOwxHCc*J=cQzDDC<#yJUS?2v5PT-M zt#GrG*A=ysb20CHF3{^T&C%ygT`yw9ukBte*jpxieE~f)7Rf>^tjw66X0diqIfB0E zFvXCbUW%7VVtP?&%Z6<4lo6>NnhZL1Jd|Zn5(Kc+!hl5hMhdMs1I9ikh_dh3ftf%` z`m(zB`dnv~mf0+)C__Q+p|u}v`IGN=yb;=c-G>iL)jkP3f7`}JCVM8~4Sp*o{q;5b z))am4=9k`91$$=2fOidoQ<4dfQAD**x7Sq+CizVJM)Pzq_laj|v%|&}k?L=E7v&Jy4K| z`SCnF7y{6&B4ZW54pCpRdRFePbvn}KHo(r@_DvXmAR_b10Ul3K+QXs0!DH`fI4Ufj z)-KkMd?AV8(^W(2-8Tnz%&aFrSZtqBf7~+q$4v!Yo+!noCVl&eOOudOCM}4C6qGqo zsl(wE$tA`LRo`DT)^e)=J4RF2tA>`cKpv{S6_VZ;a^DO3f)?My+?66S#(** zPm^N2PBl3SZ6Vy~_33ZIz>W(ATm#-m6QS#zMTbbO9D^Jz7gi+vQ}Ax5;$Q}t1Rs+G zeytgIzfO(9PR%5ONzs2$9SR0cb^+Y!JlRA>(msEA{DjYw0v9Y%q@f~nKTSLpF*$UX z94Bw`E5Zf~v?woYpbvy!paKn|0$tMwf``DGRjO?Jz^lUMD`l$sNOTY@Vt%HX2uL6^ zN9JFg7n|h<#l{^4G2Z#{LxeenWgzf&+S1ht!}@KPCR zEcD6PLVc!6?t?o#7d-v#T*HgRI@R-;okKgE4@WLFJ7y2X2*>H(DWk*D*|&GkRAk(9q4MorYrcJPs;> z5N4%NzCiFth2W0>2Te9&W=-NPFwcj4H5_~`mccrlpkir0d3M#%UMz3C@nwSaoRgJB zP2TAh9fQ&Gep#a~%+M%qJPj3h>&h7@bCS$*+53!la!;sp>{nY+feQe^?fkD|l_QbC z)FD6J`kwLhCB=9Z%%VXD8IKsjXrx&?UeAKM@wqiB7ser-Q1_IA290J%Y)JQ$)8SI8 zcYMtnc5?(k@SQVkI)F^=#84L7Knq6j{T})MnQN~yQ z8fa`>X2fPiC%Lf^pa(#G(a4*(YrA90G9 z1)GB?kv1Vn(ItPuk<*mba_*(^1rvQyX$7WjY0ky#66+!MTY6Ww z$$#+^mx@7_Gcy)wX*#%d38`wz_3+kU{oJ2>t@(3`c(C^p*te34VzPeHy7%+ea--{N z+x0IH*RHP4|1#JAi>UW)H?s@)p6vfk)Z=9RZ;pYsmfaQ`obOA`EMc0E!Xi8r3@N!} zT`0%}lD^l>GJB%&$NE$&bo>(dVs2)Ik5&1%PG`FO~JS$Egt=@Fm zx5-N2)b*-NAK`N7c!i76$Vi6Qqtmtqg-j0bL9+%yXun7nTePYuMbNT3ej(&jl(=cM zaek)&$EPWN3YhFg38Zf#G+5+-==T)WIq>0U{8f4rhke*9P&==p(ZTDIh2j1K)872u`|`)@M_ch{Q$pwpf{#|h$qQjE({JT7WU_QJ0Ur&2&M z8^X`=?~5qDjf?S;;Ns4}-p#u<)YsP{uXGs<6wiE-ZZ|WUF=cv@dyEhb zfPLS~eziY2;ZTZ9gD_%-LeXZ7?96UO>&z4Q&Nw#{ z&rYr9vsJtzil~8#L>HOgkd-{02+A=7&$P8jMD3xNG*YM5Iap|3%yv%shjzDWM}u?lp&9xi5G2O-Pf+tm&!-!+G-1fWqEL0MwU= zlm5?MI6Dyd`G?JXq8Kz8UXI8*IfUgih@#$8{IxXgX%f?zP)=~;yV|J>F%Y1n{S^8> z*M|;4JTU)sv=*p(_zH-|xQ04l33oHf9DbO?*rHHzc=K&gIxrI{Vv->JiA%qn2L27^ zR^;{6eHn_n+`SscQU zfa9!$Xt0Iaq1XpmOGw>-7pP&xhHr?KD^;NWCnjFl_j(zouf#ZllZPK5fuA`HEimSE zFqeI#s(uBBu&>VNU}Ns^s9z*D z`7!uhHnHVleNNdHeVaO}jm$cCM2M2RTK!cv7#2A9ZTmjM*a*@N^LJK584vdn=P$6D zb>|_YmvT(oHV+!Kl4X5>cf}y37MuY_g;fKI>tRUruR{@IFE04hZ%q$NwimJO2%rW|HLo&GD|)@ zcs?aEBG_UmC0|y-C6V{Ciw^dU8bt=o0GjP@EzF)hUwZQD-tIj7b#f9UV^w)f2AMiP19JECu~0}LBw~je`?Tp z>mI&rZ?3k>e3|+<29OEpx%@9Bp5s4)GM$TC>a( zNq@lEG=7_BL|yZ)EiyaXmE*>>sJ0&l=l4y)JvaS$aRtuNFUm)azw&HZ@#xf=vbVSM zuug_}d$V~hF?sFnPh11OuP=U|_jkdHog!s7V*E0KT-2G;)Tp*Wqy1S$Ef4ZnGW#<}gUHG?8abyk|5~08#SN5pt;J3=^E^O0k%9i@9WZ84tInmXM(zr{kLPvk5r|)-i%pIhJf+LM&S8%cp`f zv3E%`QmaV#nMO@dQ4%W$^Eo*3V9h$J$%S)43j2G8p5~;ERzZSdeo}SM zHg)V~`KVU0y$S=xir^6=_|Ka8{XS;EfwTM167QSY-FgirF;KN`(<=SMFMMvx^o2AN z*_%v^fNYc2O^&w$Bfwe#PmEBA8;Lp@-S#()O8JJR>n~l{iov2}p-I|8%Aq0OU*|Q$ zQgqYpE0xg%E5ss0WqN|i!_4D-_?Q=e@59a%IHl;EH#(hSS{Pk>h=J=_p+~mVl?4g= z!W-lBrpKPfCWRJT@^xR=D@~1RlehP(%zyG;xAE_PD6-s=&e{FwIDcg3(IwtUA7_J^ zxbIVYHGj5^Iqx0`&ubs>)=JiMkm)rsEEi>!yOm0+b5n39$`oJNPGa=q0@FO{X2dcM zvZA=xSe#dha=m1pmz0to(XN8@b_BNxaXbo`9CVCp1o<$=l1Gk=qaTU;GeEv8@~yqJ zGMC|+Qs$+$$XXW0Xp&<|ieZ(9zHbgH@kymf9E{^C#qU%6wPlFqX@W2+2O)uxh!4NtV5gow4Pn4+p(tn zV^TvSw&7o}7m;t$i*_Xo{$9I-#7#`^y-AdL1|J_(^gKp&RZqryo@kv}TmxQCNE<;% zG4^PtGP?5;^^wk~P7jZ9$Gsb1iEG7cypYjuC3Bc!Aea z`5~?xjuVFp%r838l6e8;^X#=RDWTT2uVV)cSy2rM4AD>V4^YzMh??zS6;WPsaGdpM zvSG;^3@lP&@y|!pF+{RDna%0sgN&0-TRQo44V`0|Jy|F#o#$lW;705HKG|us5|6{v zu}7}68hy@GL3|@KJB=!1T*j617INfnzxx?}K)P9@C3ZAQ{E5H-<|hAjSwx&h8q6d) zZLN-WlGOjcq~{RhIY~7OY&aus5M?n+(b_yUa7^{N0JnWBccpj>5~GewaU)ZDS9G%< zZZ-Bz#eRb@c(2PBmSp*0 zDaeV(Ij}I?if;7h8mkwaEH!q+7&DHTr`Y5#q4)Q~27kS6MUE<_QG|`JBbbSyk|}MT zVGrg{61~<8aHrTkzpBq_;Wsp%nR*-klBLZPeemR&1-B<4}{CU5`YPpy*jzD^g z=V^4XW9&~B+cDb&3DE?@fl#W1p-5V4N-~tzkB@T5_M-}nN+RlCs?$Z!IBNVnQ z-tssJ@q6)ETb<*x!;mo2P_&S1B!orNX|KKQ(47ovl+lLE&6+>T!j;RK1B3FO(M}q7!0~MDwQ= z%-mFXYp2DfdLPVW0-HRB$BLd>GPJKOraM)ZcC%fT|Ng;>rmz97qGZ3ioH;$&EBvMI zp8p$#nJa<|fHorF!L#30c0h!(-O-g`qv2F2sPM4J=btO58`5wrz@eGzq{og_vcrIFWC zy2s}^KflUIZ;Miiau?Q}p9F8QHM$uWE`0oX@K&1IW-xuJAApI1$yVLEt)p5ye_M-D z0-|-=mEmubURE7tJ|%XlKGDI<;Y`Mbu#=GsVkNEu0>fqUpsI+cHVF)Bp#w50=<&th zrv;Cv?`7E>mT2nBB`bvobIwgy3Q=fP&ur2TG2jmNAfpQ5JmWJ;uvHi%5p-vYqG?!f zozK6J=9ej7i-YxdNBFGKO2h*an7}~&d8LhaDKj@e3)k)i!p!^IEpf!r+6o5i?z9A z6W&VtgTX;857lr6@NXN%A4`ktI3j$Qiq&S->5UIXVSu1}+ zzI0zWCUmA)jl@SzwTlA;L_1a@;U_(PPqsP31vlm7*!+fVgc&0+IHfjbM)NAs!}Gsj z8|d~C7M6%HFSbFem``D)u^(f%jEqXY4IrMh!XjOsd|2g>ipUaYeTMX)<4eF;jMFRC z((Jj#W9Rb(DP?<_x42n~Bjcf%yEP6UzoeQ?&$Tv>Jl8(8Zti3}T^MPQU*oK)N5|-5 zw0iETcbaVPtKl7W5dgKK%+Hw<@7<+mAAdxA#Nr-LF0b?wuew??)CW^hXo>dJu4=nP z0ueUa+qCyvvp?Ow-?zW=1qojNtNcR|Zz>YJ!Hvw+Ps_0h$Ki#WKG5UfkthPL3MTYr z2ZXFL9dQc^BJk(s5{Tw0s_4O7D5wo+^pt_D`sK$r! z#A)hSLx>r_*C+8hTy~PlH%z>U#tgd*FJX+fgZpkjUk13*N-C80d_4<)f0n+sVWqy} zNe>or&Z^JGkt&hIe`vxms7{lp4)vXdMVLPr)rHJ!!9)?g#eOOmq&;G75#lX zA2L_EpQCb4L%72!Z36=Y-f$2|$LQt2o-1gQu|n@VlWEABv<6wl=G}YEXSQ0Qi0Bzp z^#En=>`2OfnyJ6M{+m|m@&o_E*Fd~yK`No(!(?g6RKnkg8-->P=eC_vG4Jx9ES`QF z`_ZYxrY48|js8Vghutt9(%e0im*hw65=5*cy$qEx{j_BR;>PP6!~Mst_R!$?GMHQC zE=OXs$}3&Oh4%$C2mSY`->evS%ruVjF~NO|;d{d-DR~{0p;*f5n;hZ)4Cjp;)+fy~ z5xOMggutk+QYF_O^^=0vm(x-hk0W%^$t4d}DZ0D@bVfP3ig{jid3PiNrzK2 zdXC%Jlw7M#EZpa)QAdn44<4 z{mQ$qML+n?^4 zn9IrcL?-&$Sft<-Dd~`=;KJ@{Rz_!*sW!)QqK5JdOOXb}TzAql{CDy>Kk%cbtUSJT zl)Ts$=J>jiePr@Atu+aCr^bn@!C*D`NXU(JkDl56jVm5O66&5W?|Y(?5H!bj>q&o# z!(2+H{1<9TwK@Fn>g`*3dcPfWd1M7MnKkq5UM0|Kb>)HOUyq15xg?SY!o8l zDiNB$vJ(V%E_7IWpfk9|7M3l>Er%}-+o7JF#M^bL?|qOg)3rZ zjOav@oaVjIS?SfuK-ODaq?DCx0XcvmMVnum@aLB6L-kD3`H~l_V~NvKk8%wSnnD_^ z^0Ih)kN3k166pe4l3W(98L!!sO;9P1H;k39k5v)J=96sBS@Y{(QN;$l{q3zbF_`_i z^krlB>oUP?r=pi97}A#m=RQeP+COnn;;%m<@*mCvJ-GW&$t%qws`%TD8@|jI6}PiC z0{fpTHV9C5KpX+wxxo+p_fN>012@Z38@HLx5i)w>mZ{zm9~7>p`oqb;OKqr=51=&( z|8eEz9pUhF_x%S`hgCE3Z^hyKD`CfH17T6=@XFUOz}lZLYR|_sUWTUB4pE$zFP|MM z8~qA&ESj)7{3hvmLOS6ObM?L}{dpt}J8N{EbKldz307QU+*)JNpDp^n|CpC1yC1Cl z3B5M5v!ii&V8HE6yZ>2DoDNRHCV-2f9beb_WLo~mXXTb$Bg=6;f9&IqF1PSdvJa!I#zj07O{G%;K|)o{uI)L^6`1Q zJ#AZB6>16ZbC;2~@uU+y*z}nIEwKh%8gq$xz8^}Lscg# zJ;otoa}rn!9#U6!^;3bw-nOh}&Oxo|wdD7`l)Z_B-S1G*+%EE#AStr?N3g{P)vn-3 zQ*%n${ZhgG+M!BCtbLfEpcq*9lP=2Td|ZnR(e4Z7@9$=#lg{0oZs%HBWUE%jSOPlP zJY(*QJN5`bSIE*L$8*Yy@#Vb7JzY=tzNUH@ zOHr6~(xdN6)nV^4Nwg>!gdkXhSF+ zxWYX3K*=69j<2DV8vWoF6p1pr>7|W`Y_~p*(1pLDe!mz$Ie`sHNO*7En~ur~zaUda zUFPb^5XH9&f5qO~7?MQV_q=*PxHKY+LyP(#~24&+G}#tW5usp)W7cT8AXN#8_wSrbOjHUZ%q|XRFSBkFb5Ie0$z@G`fKd zgZmsS74tWBYUwN(wUE&Kmy_r1D>*t2Ed@34Az~IJ)_s2h~2J5mmqCSs2Q^Z;cMHp2x26B|FXm8 z_b&XdGx!)>by$EN(;2xz2oK6cDvo}Y$Y$D;*jMk=#al}8ur+&U1CF%fjij`j>A#W1 zw2}p>iE#f2*Y_Wb63ux>$1eHlHJ3o!OnU&}=V;RVm+A3Da_Up~z zlY#1hz^9i~k0&Kc%(CzGZj5*byJ`QVWpL_=R2r13;YosxBTIqRUghFbFSy5<7_fzM z=yjdn8rD>Z{j9#P@x9DEOxos{(U{bIe93l1IoqYPpK+J7-}DFmhxg@Xe6sPXz462a zr!DK)NgwpMG4r*(o|>#_UA)5>R>kv-BL4Jw4^Z*5%jX^tw&cv#7v);ENo6Ye-Fs?+ zNR55G65GoFn~*s`)K&eeH^by&(d*$B-LlPpZ{?#iG>pNYP|o_nM&8=fCl~#L562tK zoJL;5SB~gp1l7E-i4=JnN`S`@Ydv+?%_ms@1>f-k^Rm78};56$TrfL_u!(hpXlJV4eJ>!*#(4vbX$)zdKE{40y|0T>WD6 z3<3;TqG0cT1^HzW;l5}y@~Et5m?7_&dpa%So+;p#A++k9aF$z^jF7K=lB8ilf|h~d z737!Z;igMAiQ8(ZEvMCOIaZ3o=N5un4pV*B)PVAvFDg?YV4#7Oxi)&#n4ibv4a-9d zIF(b*q#P=a!!oTBtB%&b)I<_A(~?T1$M|Tw1)ea!(N9l0C9l(*2DZ6e$(>1WkHUmePjdwq1^h;A{bEIWJ6!`Lso;roa#9F7@WA^F1SS{Oh+^_#g6@)`{HqM~7} zCxlNGiJIAmwN`nKipA=QsV_u&1n%uXwl77oH&vCiz;fA1LJtn%#+2z|ocR6IU**P- zO8&x;WjsWgxiS?G1T4oa@fcqJcKgYbV|RG`Fr2Ls7PsIoaro`+Gq}{KgY@<@Sd&7N zLQ2-+DC1`(iAYoq>`lgtvhyx{|CfQ;I5KX*u&5tv^-t-Qr4p!wG{)2-PMjMC!7bw2P3=`<>iB09uDIS1*I+q_v{ZM!t6G1zhmp) zYdIrSt{1bG4I#HLePcP{tLi;M9S@V0C;m(|PBNu$SI;rybf_Ge#@F?c(4RrCY!5%3 zVYR&v^6mTfIRBJ|xgu9I>%xK)iu|#%y>%4z+sr0{_bB{FdoNb5E*wP%U~agwZs%6+ z@mY>do;E96DPvtJ>r^Di*YVIg9y**vf~$?8ly;BejLDOlp~u-X_JLnNZoGv(>}JLE z4W^J4f+Z|4XAGbmUY?*DSuex*wQ)vP%<;Y%($H49j-cA79srTF5W27Akzek97vgU^dj>p%@v} zb<$hnd(*pQOxKcKCq{{ECHw=H6&pOiwR$XWq_L5teWdV3jDFzJ$uLfL|@kEATrVhxf&Su@9>HhcuD zPtR*v;8>C4(cWerI5X?jre;PXJi5M6`e5t8TT@S6yZq zVhRmPNc2^Gcs2j^b7Pe1>*WXwQK?I~-PCepDxB{p-DhlD;gk1X5<{kK%#Jn*(ZAjo zm^CQ0y$+8l%WztaHiFfUGRQ=uY9%UbGf@CaLyQ;?(>{pc;Tdq#TL@q2p}m0;!r9MW zJZ(zIVE%%^XO8^nUSMgjgqDbM=4dIC5YK1+bQSj>n?jAy-Y{ik#t8-&GmP9!6`R=@ z4o!1RlDZEifuy~&oZecfCfpHW#=(8&nN-uFML0&7(GY?&?j#t$()}PMc4nj!63f$- z(CEU-M6!@I0m1S5U2Zaa&4&=lBXobhml(o4_4Zl@1fy`px~Uw~ z6LCKA1fCZmDbSnVa~EY&t^2FidD(8NN|B&;XF6)5h&ha9>Oxth@+k{<-Lxlf4x4SM zTGs$_4E(3OR~tZ(5f4_V2w{9=JdYtiMkznGdF^U+4f#W*x#%|KoS(DfjMr3}yo2~y z)+bcLrFLNls{^Nv?3GP*gqoe01|Pz4=*oinp&Ucq2y}JqrP~glX4sog`nx?vb>S>B z8Z3S;iW!$I%kab#1vIdWaiDYf^?fka@pL|-wb&;lQ7>qp2q<)3r0AbqJ)B}cxX4S;Icv&5 zvnHGCZhlXX+@!NKiV06CevN|o!drpor$Ym-KR03@E;FXIo$H|88lH zq~2R*gmDyWe`2FR94|nmAnV(H@VK{@b}-|Gg+XEPzJ6st#Q-PP_j(~}+aNYzfuXIr zhx4;mQTr4(;z{&on`@fsoY9UxK)9^1P9`Aun(^q1^Rj+2S^g-{+Rpf)kNQK6VSg;V z>(O(wDdxkk(51PBroz?}gC8asFAw(^-Xc${b{ktPd)Ao^l;=F0xqjd_l zQB38#FVPVn4z(*3yvQY%pD#-~(ozNLIzQ^J~m;r44h_H=oQH`n$2D6PgtZ^Hlj4V)+R zk-(S6%b9x11#Vc%ToqW?XjpNy2i|bn@_PzHQ)xDbl+|~=-?!(0#NZp>odZ(&kuXv@ z-Mo~?PhD7;8%dir_hrRqu*-Xv&dUR+=mQK0^!Nj61s44F1WCea=c;d52Yy8vCUXo+ zW;(c~D08|O?J?WdgQ{sI3Xgz67YyIj`?7XC1|l%cr{okm9-l*;h8_yoIAi3{q6i#O z?5WDw;g2gLUX68S>K0y>%P77ibT(ayet$nD^JaNr&fW6DyX6N}j-rdqU$h%)8=6cD zJy786uWw%8&v)o~yb9%)<(!o`$o&nLFcR>1t+{<#a{8FKew$`aO1RN7Rn9sU<~I29 z`=PR}c~EfC`065tx5bR>r6l+&!0iGz-+=}JjPOm!MLnubyp`^|6-k#)?YIw{9E2nI zuK4A~{V?B!z)iz@JFMx+x7bNM-5tFzqI|()VmV4GqI1g4%-SV9f71WJ7xg&*)v@pE zh5@;43xWACWDXAu(R{e7Ew9UCwLd?SvEsdtnL13h{+4ZhWj_Bp%cq)na{A%b~*fa{7HrxfvB%BoB>u z!N;RV6cKYlr4(r5gspmdG;im`-a*j#@n-j!ReKR)!{m`wes*(ZSvI=Cy6fm7c?o!! zc21w~J5FhM=6u59gr6;GyC-@56q$8m<~YO$JzSuSq103e1zwltG%?I1hZ2f9ry0ThmV+&YaAgBV^P^@u0s3+7cU_}VDaMGyAv7jVZ;SMKD>;KK*^QaS}P7$|(sMtshFsxmtDsW4bc zpl?fb)+fG^iJbyXr{r+!$&%+l34*2BXX_o(9++bPG=ts4XHQc;MB~9`%1wMjC^PK# zf=j_Q2!+^VW;8^jqA9)3+sCF4W-=fcB0sdOGZ1LGy(C8x zI)K(HLysVAJVq&(KOXdowlwfHUrWcS*t-}0ExEBT=<1I;qNtc`|Fv z`9g|T88MVhuSfPq4xh~5mjTC5%YV4BWJpPcWd~WHCf#jR*(&O`tR6X_Nb>`MBokq}}%LmDjZzADARRknVbR)VhrWfUOfflnRqq?)UgzrOI zlJr8KDJ>Wem1>IM6zB`~iL*T0dLZ5Pj9~I8_}A5*ZLWL?!-2!(g4%R`NdeWOoVr6W z_0YiU1c^%h{Ue_Y4A^$%zz<4HCo{oI^B1O#(w5a5R$|%P4<=5?cl8L?$r#dj4Qt%j z#hCjr>sw#)* z%B%C8#RSwItlBa3QDfLz<`(Mz&q) z>Ec7y$cgi_eF+;anLFbJZ;9Cp)t=>H_9pTTlOOego3}gP6^L}0ie3@-Q&H9rIyVKA-DPPo79Kf!ETk4%&Y3rK2O2C)X&W)yz!IUpv4oL$ZDb;kU%UpI(p*Os;W|f-P z_RQ<28E0f8sJAgFp^n@maXI|G8b){jZ7Vd1$Wk;!jd05Ms?qd=b}p6v=VWZ6LSh#t z>zIoG%^&#*(@uvxW#K=qr-|+WU7fIu}pM=3mr`dT5Kkkr{p_EkYb#+Qd z^nbx6+qO2-q!BzOWMcV>|6@6-W%@Wc*vDzRC@7fO+4lia`{RnBV6;kiy;W*$G2*UH zzo1twK2AtFnQ!z8Dx5-t*>dH#`s3oK>=~J|K1vX;N2F_F_zP^LOH4-W zxh*{)sNlzCz*2hVzAF{+%7%}X@6A~tBCo#!p>0pkl%V72^TZ`5^oXo)Q#iBIHft+g zR?g0c>j!P}o(JD2P6l*p&QTRx2dH3uy9sUAB*$+DVgVp-`^ylmX4z&4ANv#3E-bXu z_aA6pL+^LJ=%e>M%CovOZ^8e>$xNKMI@IFQ`$hQIfN;z}RTn+SI{xKZ-PCg0VP6-g zcKKoH*V%B1mXGw?>BvcM0)o~&(Odad2gg`SX{XktK|8)VW;I%D5F(3={7DmD(P9sbAL*gkkj5@i{|)%O{uq z{UD>k`)6?RzfksgI#A;LYidzg@wkv8V&UPe{F6AIzE@1bpM;ZTVI)Ws>7Fk7vB`UO z+19;@7p}9lrA%JOaH%6B;60463PYf+`r>ZzlN0gb6kY5L(m^3Cij-^=H{+FT~&a?ibd_}3H|@A7CdAi+?B ze(|gw9fUcVwVb68^&up**q8DX=4T~&{{yRGm+C0m!eQhDkN_1+Nbw0}3BC1#`N1dhpm(-H@Y6D1IiQi{1=k1) z?8pt{d9@iKsBM#0A9vwkLOM+LDum>k3JiPrNsohEhwibAUeLBs}DG`a-T{(k)<~fMM{4BsdmVMKFwd9G`?5MkHGInwevH5Km$t<}`B^`F>i=JtijC!QuT6Hd6TSgWPZN4J7*-+=p);Un@H6W5K7lIT$h-d!Ehdo#uXt3$~^xhIBwrVD*&z@ zA5b4j#%pu;fAb&?-+*QK8G-8$Zl+8)!!oJw$7%%u_zC07MY-|ek*^r2;L7OpcRzgp zY_J|O+c6e&I-0*_Wc8kp_3F$cZnj@XxxHp#e6B7zEsnYhTY!V}Yw~%25Yx!>w487K zJZyD+{Uo$j&>i?nvP*we-rop$j0Oh!?>`?V0 z7eN*t7PP*evUS?F$EvGs+D;x#(zlspvMAcX+to>5UU+71w@j|(Xkyv_``9<5JFiu0$a!l38Tte*fY6<>|*jkE~?=HJ9 zE{Yx}C@)vfzle#ODc|SUt?cabm(L!id4-M9!lN3di$Pc`M;4zcUmpG99bAn9^Yc1@ zr*fK$W$5I-7*jYrbyXm%-cJsZxzwOOzDALaBUtN@Eq&eihLZWA7?)|eEMuBZEu0+R z3XB;c?i*`(MWv9)nglblm)>Vus_z>Q*W(SfjWb_;ujFzS9bdx`EW$)KH+l$ z8I6OBV~N7nWM~CfUygasBEBjPQ-0TixbXO#t8!aMx`O(#FX6>6u9*FII3N8g<~W-e z-9;p^RGYoAx>+s!d#5`BDqjU-L@VXIf{TX5la9VjRI+k(QScp1XKAr;*e^u%6J|Ui zL?XAGge|?k5TdhhM(Va$t(4|E9eu7uaaxU;Pt{__c7or6d+_L0t>)RN0(91fD|u-a zqk8XKl0Zp&>#}B{>!+;bU2A)%$0H4icF8P$@-NStU7p1~vPo3LL`hDT`l4Nl1j}xO z9VP}yHMj*@6xLh2>D#SuW>CEEr=KoTt-qkL(X+yi*hFmz=SGM=7O5DquiwtlkMA(S z1D1GAqO^J8tnBmoMhTi2Ln^9e+>eR1n>bWsmCIaGJMw%hP9BBkmJ#~mj8f((pGwTN6T>N2kjD^p1QkMr78i}(cC(IqQ2=lkjm7DsI-jfz!-+jx>m z9c<=!7wX>IcCnB{YfL*U%=s<8Tw^l0K9tmr`0!kt_4%ho{Z|GYWyG?`$sKDdNwBV> zRsE2rlVLoG4LgyI%Dp1&H8IZ=#KfG`D;i;9+8~h_1PSw`zeMZmNMZ)|~OwPAbjp?>IN^}8|t$LIJXS+GT;$>+Pq zqYFWV_Jw)~q*9uEI=^;5&ITK#OfLSkh^6eqBx(qw`B{yoe#!-Gqq1>V(vX|odlo+8 zpf9zSKUj~VF)O>utwe2OPX12wau_65V!0U9DG1d?Xy)qoOLb zhCP0@kbQZI_{Q`8?kXKhj7uVH*ursu^nsjpSc-bU(-@l$B~|i_=>bf7tEiH#AeAcb z?@K;=n6~20Pb>%^4p-ep`@Sb5zI(&3`o@mEN_HmslF8(jdCkpQ^|%{S8AygVld|3n z*(R%nIeATphy@X__0hGFQHPRPdL{$>vK-RGzr&-08{l!mb76COS58*24fQPHE`gc` z)sqoMTXN#!sH&-rU8XW@drQ_6sInnVuM0iXxmUO_L}J$Eoa{x zS(D2d>js=V=G_VpZP>uXMMV1d8knjW6B-p30@xy6?bJpjO>ulI0?0i zzKEmN+fmWjNRK8}rC$L#@vp=UgUmOf>xT%F?mN+2uP=@;C!JM`zqq}%3VT?=|STTv6Ytl~lRlAAEIPc@r5a^tV3GFF8T4CQx{P^nk z;Jy6xAGC`a4regISabJ!d23ew#2*=NTR|;CG-<> zmRSeg%y@Y>2x~{;XS=Ol9ztU=?&Ry?*Tc>v0%MJmkL*hK8GB~M198)uW4)j$j|bm> zN-V=~eBHW#t#cLucuxK3^B(jb3>=O-rEnE-ww3IQR}b=AAW4B~?QADe&_A8->+(Uek zvz65WakgASJ3_l$eo&O}*G7v_&4FVzD%)Dp)~V+#kEEAWrir#4k`XaXtNNxhDm z;=jucFEfH^<`x>Hx#qAsYu#3C=D%|B4!{O@Uy9v@ngHORPy>X>c22&k{AvU- zc$kvoahKJF^)amDQjK{%d*J5Kr0btQ7bx(uMr#*NC;TqH*D}{w&#@s^68b-m!u(eG zqKzKTpSkMFT;o9d@ev@7HUn$mqAFqk><5Gd&RtP_c9kiD5**(uV_l>{- ztN(@Y_p)ttCoz?k@L8E#504wVVpLAejK@3=`II0PDaj!HcKM|4ec3Ucp~uc_36vVf z<<2Rr-qL*9EQO*SZmygVTk$26XBR4i+MfML9E!cme|*`m-@TUF;pMoMVWYq%Ur+Tg z=S1uo+pe=q?M7O0NPMT-@}U*_e&KUNO6!ID z^@SMw?aAD>-w|MKHTSa83|9;a)n1l``U$%#ST6)@%m!_c3nQ_DyPb_hCq$p0_ZFO> z!`3Mb9oV)WtFXROJ!lR{%bU+skI=e8Y2~_>(n~nBApn$Jyq*iJe&jq__6*JitV6mQ zYh~s~nlvas>HdDq!iuEzdmDFdY|`XY8`7!fr<|%3R_p9QKZq{BXjvhIrSXz3#@G_c zgzebmoa++lgY*xTyU|bB`p@VGCt7|0JYR{{-?$N>%D53RY!ZQ!{qBrF!DxsP@Tm=g z3kW?#fd1cu0)2s$D=1nW3lWBgS%28Qu==U{$C=h* zKS}iHxHZ*!E3az4*}hWOvdb^jnm|6aL_DDjY2HRfx|l0|vNnJJ6b30}e1x(5n^&DS z*P%|@ma>0xfGNhBTb9!mpOi3=oXFK{-!E*$2bXDfgU@yf|)ZW$2=T8kidU?KhdyZf} z+^IdnSG_f+pTANAwhP4Kt!6((q=muL3tWfl!>zQLD|gPVuTB4aQXO|9Moq`e{%Jmjb&?l+sx#7Q#%$9SWJM- zAaHV5)h0qP;cqT_lOTw<7emQ^F2++JShsh+rT)1%P5blc;`7}_W%}(WPZd(epNspM z5C}-bQ-z&%cL5M)L+XI$49G)xF2J(_LI9BFK+thGd8pZ`l|)4TDLBOigtvmvii;q+ zNZjny-0XnYXNVdCHx%%yfZzkvxe#>R|I%=C0BPkA2PAGzYHm&-EgQm##LY#`%>{TR zLzoe`x$j6t@*wEQccg#<5dt}IkN`1+aPv}g1F6{%F6>*98)5FVNpbUmcdaWSEC}5E zx6~9+?)z*nb!-eQ?5Lst?VksLHb5Mac%algpqMw}f=AEZh)W6O`HPD8-&g#1uoq!J|LpyvMr?JXfEP*MeFD7>oaQV(H;za6mzc>Mnl2JZ{+k==R=3Y47-h2scA8aQXjjRVWnXQwxqNC_gpW&hs-w9Ucmlq(F!O&lU(e z%Ae+dU?ajmig9pILplCf@@Bl>eu2I55-{5Q1<5TXU>pOX_yY(BH%JF+4thOc+yWuS z_}h&9KyV9$9!-0tgrJOQH&^v@^9 zpHI%4Pp$iGl9m>BU>vdqo7}hr0Tt)pR{t*)oVQMa52Um~P=TUW@W1vJh!`^0Z7)C- zIm)djkiVV_w?gRXxo-JTbKiB&eH(?qzW)hWTEO!HIc*Ty$9H`|IsTY|k?vt~ z-O7GP$;AVdbU=6jv~H07Q8zejpLas=Z^HZA9Ahf`zKCq2TH-ruS zR>V67+(5}7=t#xA;IpT_5LLjV3!H$u2EqJ+8)%t^JO)2#7LmvRu}%m&Fpq_d3t$X_ z^A$xOgbf3nWN(N4jSgUI6cl`LlN0zbrVqjn*!4ml0>j;)G<+O@^<>s1_z5u8Bl` z$1L#;5*{`?9~aaA7!Tx<)&+Tt`8Q)8c3_zjg#d^j0zsi1gggdpdm)U#g&z_gAT|W{ zhH!+$iU8#SXe9p;GokmUS6%=ZfC&CeNFE^V7ZN^TIt)Uq+>HE(6^j(8749$udMhD3 z4`96p`J?b|AIOQH9q1W^2>x3to;#_;MnIjihahZsQg!x2c!7;!@LoeNXvlXp$jE45 zBJ&SQfGHIU4GoxD+{Of+Kd}JJ67K%~GqiZ_puFe@mFph48xNSESkR+81u+0ECQ$jB z5fBj9VTb@C6igg$Fhbzx1h$4jq;L8K4M#Zw&b{D_CN~a|0$6?_;Q-V_AiHPdAmRNf z2sL0e1VKT+bLT%JG4&S`0pLCb_Uti^m)7;V^fXN8sID{61 z|8L^~I9y1N5x`$2{uwYB00sgGE$<`<_vgt!{bBswAMdTI5cZor;DVEX#t7)M;%|}3 zfv{c(8X$*&gnzTwEO#8V{EfW-rJq2?#{ucN|CWRoP((ta28J7vkQktU;SU9qr(3B1 z#4hmEp+A2Eho=w%M0RjmZ|Z>vk^k)>|5)dbgY({c3#ZWRg2|>d!$iG5bI;QKtW~ESL*bgX#{CfpLO)285ml2Z;d)nFh1Q%~^0L5pMix ziE$TX?@Yx9z+Zr48F>Q)*E$RNF*w_Ts$*bT4_;(jw8(E0xIRv--m zx>WiMMC>L;kpV+v5DdUz1hoC_)kW_=R}CJ>xY+Da=)cvaG5Mn|#@|f&Za^dirk6lo zK~oSY{;m3dr2R9t!CdYpOh9HqH9t*&dfkLH!oNWSbH`iI__%ID8{wTmAZ*|Z=_wG5 z(^-i6O_0L_RK9{dgqJ||Zo(V}|6jfF-(mv}D-I}dZx$l-cf{kru^$02HwRK1d<7jh zoCS0%>IG0}vrW+3!TDcd9wG#Y&w@62H~S~*VS&8<#sKh~K&FkEhhU-ojcPLrh^p*7 zXpzbJe{pul10A+=9_(^^?vFhv`2Qy^K>7c`!~bVIf`>waP$F<}0Zj{_EC{G5e`HaZ z14ZP70s@Qwx_uMEKy^7efr@`W00S5vA~0A0>;=I ziL$Mfe73{}_JRsVv5RQz1+XhNV!;acw{|&a?|0z)=RWuH&lz@EyRE(YUhjLc(zz>u zaNm0|2oDX9dT_gQDgU-{g11G3x_kSl7Obpk>D89DQbHQRR&XfYkyCTpl0((Euh%qH zVOm-6e$6Q6vStMgWXvk~=56n@BY%85GFPO|0}1BH{bEy5Nbmlj<}mf(1zfjtJ_HB% z{T_BY^%J_T`2a|_zFX6~K3DXnm{wD{k?PA2YJR02+JhaP`$5zG=egH`|c<E@>2Gqi3QOB^NM?tMfmnzwjQ|5-JQ%0s^Ou3O-Mj!qKU+5Ywq3D`p->B(TUrYxm)3h)eUY|A!gBc#1f`}{of58!a z^aZk*54_(q&}e|QtJl6@wLgEx5iMR_lk|93+G-u?jA46t@n*gn^-?Q82jJUZ!cb?u zo9JuiI{7oUvzS-AepNHdE4G9M&3b8A@!8h0HbkTGYg`BRUyB=y{E~WAcZ|l_QdSlI z=QXX@QcOdtln-`c$~ciRKH7H*o*$Cv*^urC zw|CZyY+%}hy5K8FBcwvj`6d7>G)KVZ)u!JD6^ky=V8e^P1H`j8Y0~+D6m5tD~r|-h1bCcCMKL))Z6}{94Khi7n zBWMuo_1tmLnw@`ukjzgf#5Q0~UFLD?Vu;hDKh%sZmkm&x|3by2AB2Bt?2vZDS^-h~ znE|GJX_$7hHjSj|7nAS|E?A5QHQ#rA))C)vfdw6?jB;BdhI6`uR;0IICmX8bb1|fqaNSu)-BPyDpOMZeqqxq#mDA> zcKUjtUH3~c%&rrG_WgRs@3)R&ydK>Fl+CFN)&+omJ~7ej@-Gq%YTF+j?pOLO+6!Pu zb)ojc^#QP5FJbuix+Iz|@0#!zIjN2gldBSqm;W^=f2u_L*Q;p1E-1h7Ny>j)jdE~G zm!RU)lL7QXb)r#y6ILvmMUP!-=yAtmop)ed0tTh!UFMh)t@df?ofOpGuxy5$akH;{6wBWaO4yi)UOlFiTvF2($=iBWV# zQXiy_y;F~0RDHXZ3sLoE{vsr@L#d#2JQS-jT?zp+2!kbsLhO(24qV(dRYl zg|5jFvqka+sp{3VUYz)~JrZ^5t$Kz*2nkPCRs^TVYcYVS%=oM(HOdnMter1y%|mHC z5n9U1S((S$y3$2kt`@%>^+t3m_*-z2A)0Lo7BTEJ;V>C2D$g|~CaDG0iCVSb2RL2^1%1aJ?AGF*i3Yly-Xk%9Q@g5> zA{42pCDWm$1x?p8R+7#jN$bTo_mnHK0@UBJDX~QrM$1im%8j}U;`>4^8}rbii5}{# zUbNb*7dL8JZ#N-Co}Ox*R7@P17+#01*f9^(87%;2kh#z4<)G7wrjNCF;&vKVI9Q1wq7K}=(&CJ23SRRHkTsy)ef217q6A$;*?7LM z?xG8{Jh4l^N{itMx;*X`XfB^Tq*{Lp|_9AyOIS>jTDAN`);qQX1Y5Emryvg-KUuAg*r=^!j$!g?V-NsLJZ} z1cXP^yr^#3qS9P=b9Dx)yVaJJ!nbR6VOq`e3Sr7v=d!9xZ{P}PsrAuVse#G8)JbiL zy$@~6SPGIceo6jsC`QH_m@~$}+?Fv$dwz|OmB|_zKa(|DRmRvda%cU7LYhO64zHcHVu%*!b&9<^Lt@CG^QLBCv^;X{uN;KkD!#+H$Uj{!^1Suw$bOjK}ZlYw}OOB?Fmg= z*9gWOF@%XX3<5!fTGeNakZGtD=3^A5nvN{A`rNG(7=J59A#5PpVD{-?5bUHOps2NM zYtZP4J&A72t1kw#ZtRQ#xuPi2S?pEF`Q6t;f=z$$QiscFxwY$uNSOIuH`4 zWZcoO=*`jJJ_6|5jS!iW18NCpWHAp@xSq-V!{Kh6+QqaMJMi#~=TyiT7g$?{&;Vi6 znY`s6)+C>?Cis;@IHbhj#PC`lk<`qs#Tt-Bn5o~|+>(G{Ta*O4HerI*tuSA~>V`}p zI^pq~tl4&#!?}Qqhk#0AzNpS3Ol^v)W-;6tt<9+wj0S&Q2NSzF#l$>odPa%$UbZi< z5?L_8TH*m*r^aj{IFd=L8D7oQwB^{;WYtezP1{Inj(bBU!)Bb6i$OCOm%-v2uQ_8Y z87JGJj?KsV7@W$c)kpCfiyv8E4CMYGc#DlvdlU2;w9O%l&+F|%0J~m2|GD66wx}i* zV>M!Z0QYjfLY`3=umjk}7*UUkHCgpkyv7(H_=cL=Ze-ADKvk}&9tq3p z)r2b98We<)qk`55O>lZ9nGY|>)HiEllN>t~X_ttSbGC^CKo9^l=9}MvHk!}*8@Ff= z;fdM2FKl89dKq=IQ`_5z!K%1LPmkRYq|h|#g*sJ>4T74idS>rfP1^`0 zgZ;*UghR$7S$7&y?2ODV5QVd9;?(en(9*vZ`{+1mz-<$peBiHgXe$!@6JtT#Gsh=J zgs5}eTKb+ip1$kG<1P%)>U^;m+_W3~=Fi)DW9rNCa~6T>^YPra|848_qi%pYYFoM- z`|Gf{Ui~ckPZqb^>%UHnERUq29hV2%{=Wv={H>socJjLF%M6ov_18@PjqT!-IIcUy zZ_n)*ZSU>lb-$cQ-45HcuqklkaJYkW%p?cL8oNV$CKE1UCZl#>CQs}TU%-9=9V@|GO|S=`A3sq0ps49Gz{0rJjHbq~!lFyUxB z$6-EHq+jdKto){(y_IX22b@aXl{>RzmuEN)BUKeDJX@W%W%A73tu$n9&>8D!LBcVF z-^Lk0m+k+JLV*CG|DQF&O&hdc|6i?|khnzL35|`}j89S^Ys)zstQVNhaVH7+yk#^S z(sP$YO3$r6dxJj3q!{bOvm=>9EPpBT@7bR#`}o{mm@$Y+G_X2u-U(1 zZ?yGW5BcD&dM`0_Y&F65ZwSX_m-pj3cHfojxLGFA(dsi0>kftgn$HL%29 zEXcF_0&@Ag+(`#o16a1L+{tWK?f#n>0L>qBaJQ%8HO2^^gS}1Lo0TmXhZ1F{t6^@l zoxmi{~{GgPo+I|ztSLC82psL6@L z4e7gfCPz?xFd&5VA*|)pP_V5EUHis^5<6(=O_S!+4}n^y4oS4nK8W+w1oV>qfGOln z?R_X^=ToWao4W6i#Fj);cAW`6@FG}Pk8Zni5?he($f$#kXA2sSr&Fa;)37`iy>|}5 z*yhUHXkSp14)u!abd*&?K2U5iN53NU(jV@t{be|UGbbDtbT@=6kCkv~SfM5PJR0k` z!-Ecs-hz(gu~0q`mJ6Y(>BwW%%N`MQSTPv_mxqbo7M5#*l!t!}J~C)8SeA z4%&;XE`SQ^?66|!MY;pAEyn~Mv`C&OD&zF9TnprRn9tg<{Mq9Y&2{1WwFN&|zsTgw zg0jz#4Mv-ABNX`FlR&6H9tVGS*i)yp^!?COSX0(m@B?_YDF{??8kqgv2?%R3j1&pH zI!|o>)DvQetZjnB{=n^PK8dRn>-X&SK>gPrxLA8lMdS=d{0Wnx+TxGYJ=dvDyYA-v z5vV&&i}%ysyUk9d-+wyQ9gBTXHU5dkZ}W#Z#$X}rtuFi%E4;5$op$0yCjm42$4=wn z#{(k^{)yz&3-8A7nE3Uo^F-zMI}s^4SgNtwQ7Qj%$D!uI0_s z^gOzs9ET@PKQNLAy|X*jX}{l?zW}iAln`LO`srC%{{4U9%i83YJ$$l(*wr_!!e9(5%c}+AHPU>+m{x_s+%=ue7zesCOKmTlaU`XUha`H4 z@_*84oV6CwQ8db1C3?x48HicKro)fc^h^$~V%mdFPqa4_0v}#ZOYMj^UDnj}RY0y& zAC2RB=)WW?M%_Gv19^#_Mo!PAwE&>k3P|zRRTpsU70-b9Xcnlu3g>Dlq$6zw12Y)DQ%4cQ8N)Y~Ag1*(YpsB3Jp%ai z&SDie&E6200~b-h+25$I{wtDdx;z7{J#W?YtiptH?U`(HZ2Wdre>QzO&W!cZ5x?h3 zRdIH#O53Lj=t9f?%2kWOt5@rP&qPi?hn|PVC(`;MIQiW<>`}MNI_EjC*b&Z`UPzv^%LhE#TRQl#+2E<> zbdOy~|C#Ydn%9lHi2hIgg^gQqXQJzLAA_woIA`Opa#pI$Wi0Wq(j~g8zM{yp_ScBN zXrA`}MtVlyH2=50o}87&b5ZJ!HborEtp z7V-g0!$>d})x?M0_(u(!_>K!>0E9sc?2>viUUker61};fo}P{UHFZr4v~cR`0=WC| zMKRFYlUKlIQMx!*quqH0IP6{V8i}=GIxyG~m&7{t|FaClYqx*LYYbN|5GwNFd0b3E zlJ4HNt6hgAC))=e1s*2OyA;TI@hV}2I22RE3B=zt6pFznDx4+;-+~h~juUmpKS0(= zrzbjwRy_DQV>y9iSX{C}SUIbDN$i!xP~9+{zL*d@YdDqz06{-CvA3iCOh~|jGeD{< z{tkU@|B-3WI156rW3wmR!(HwBcUX)tk-D5`Wa5FQ_EHphqc?k2VpMHGBex;_vwz~E zKYuxbW!n{i)@XR?#lSl5W5PO>qU_bX!C_r{M-+jiXYt=(-ORv;(9MhO1ex{1p1hld z{o!ZCE=mku%QOuu34#y7(8mBKhNIS;c_CnCWzAwa`_u_IVt`U#DpYu0JYK{4wH&P1 zFRqb>Vux=Wgnvj7(YU#2sBITCmxuwR}HT`i*2?RaHkbO_9NE{oWKM_uJ)dEG~AVMUytZHifF zpIXj)Vvs8uWjF^4ulpC?S;LkI#2j%oaL$}(wjXU5txer?5kN<+d@FNJRMdQ)=^B%wNm{{u>aB`8+_LRTuR!D?V^3S7-2SwyVcnxDQc1 zJi(ZK4Ol*AeAEP9AlzLr2Vin{>T||aZ7|UUGO4;bi7~atlx@nDygZ;M9^0$tB}PI= z)=a~0yZCxBSzXy5AMY#;XKR8;coVB*TlwOR-_z z5^7c5H4k`;V>e=5v~i(` z!*PAs=Y)R>sG>UcmH?D~O7PRo+@xR4;}U9KXcQ}rzv}j1C9mSvi7y^wj{P;%2P2OC zzZFx8MD0(#6#^v0oNEKi5u3#1+kxKYRtvq}gPsSgbxgo@GJ!wd2HmV$W4o^WKg<_l zV8;b+TSR5iP(^HNEEfD%Kgc=+uL;(bTZ!qSp;+)kKk`N;(L1IUppF~aZt*07D@Y3S z7qB;#3e1&kb4K-D7!->eQO#MvjIUeB{#V+I6A{cR1{2dx3_CBycmvdC3n4I9-4S*b zN8)7*f!X`cph9~Q8}6XuySv25Dfm$t@%EdbgBRQ(1naJ#oAx5s+)1~!ZsWHKHr~jw zn9Ix&TDe%PWPcx;ESQ(|ZBV0uiDou2;|XL$= zwHveRBfx#{zD|RR3$do7#5;kf?g2sN-i!{GYww0N$LFm%K5xzO*ze57TXQ^*RwaCE z?A`2L^1j3bJ%P7QW7U7WFM&@N@O3_TBqDj4Q^HU?;(ooGP3qxW@m^eiKTBQy2$(7)w7)@3T?!W6J~tuOC)rPf zYSu-JE!om1x7U`AStTux>*M{06I-Zr=djj)UMpuDd-G^nJfeq=@NL%1(=LP}rts62 zBz90&4^1>xWs!xJB-&WWmyd%Ddo1C&D%P1i9))ww5qcnXKr^dW^USTnm36`%sL^Sq98o`C`~?IlGsH$Ej%>Q zT3y16x$IF#H=7?#^wsd*0NyW8fMHV}Wf&>OB0Rr2*$N`VDYurX>w9Ob*8DD#Dz<6i zf1rR44zGV10@ir_V}1u2qJ4*`pE~JD=2LjAGDK=6;`LWjddCy)YCB*H-{NiUmdlvb zUQgH_0;tO|dT7|<=S%%TWWuYk=RNa`mhgqP_#*{be( zo-N+)Y3_y_y-SrDrl_8O${$9+jjLjuw_f1Hx*Ilp@eeMn`?^3-bf z(_B6`nJ(YdNPABE84t>m<201K+S@Okzc^}D<6dWqBcJuwGyX zpJ*kq96HzZ7ra$`)eWpU@*S`y{X+aWr{tsl)ns2#w=7GHECU)hkskZ6poa+2<>D#b zDSmkc3qRmLGF=S3(}R0t)Q7gbHR0y1-8paV&UyPL9Z!IvCsymk{gC64`KYbxFLC}BAiR{`QE7{CLUy|)-*XsOT zE06;*YUZJYZ}5SZT^J2-&3oajc@sz4mUlTy&<{j=+wDJG#vc}KfavCJ3@f8)$F0m} z;rGz4{!5tO-7j;7Ggk7~{1)gMWN7@-nttF91o`b3!CGY`}!6u zy2b+L0T?ymLyq8wH$n4fPlnSl@T~n%Ag}qD;w#<+j^2w4K12|c28=UeHJf_y4=i@O zH@LMIewf(ARW*G^hc`ZfM;G6WRn0mo>Q8jOZ^4Jg&H4(WRR%7juiBc?M}Eub2Yl#H zYO`d2)$tjNd+DtWOltNqyyX73RPXy1WIlj6aj?Gs=!aLnZMV77Kr9kp@D3)e`o9fv z2s%R4`>W05ecqadcpAcukhwzM`z!r`@0YjzQ2{#TD?I!#y<^^qLxsTiR~LLKP~Y)8 z0dRH;Rnb>e9kU`N!H@V1hfZiq8_t->Q!NAH!9B*lE9I?J$8>^^r6<_ zbcHRbyMLtLi=F!kZ`iIb!UJ$md_#pds7o=os{>bWa6-Z+xSb@wnes_|TZLChT~_V= zX}nG-qSWQplOHCslMBJ!H59jC-}K|9GI!X%=`W-$!L=%Mfjn5EQWvZWU9d073RYw- zpco%LBDv$fhCvjp8=_#JoD{4ZqF|q#6s#MfVBHXSaSV9thA3Dqq+qp>0w$AG9s0)l zkD(H1JxF+1y5y)A?#0e7`-NTq{Wt91IJpO|Zrmm8>@Mpld3?3kpSyFitm@=%;#S5dWr$*>+XP@UrkJY1?0k6QUA+tN9P&* zh1Ydqkp&Fy0%~067w>s0#n(~H-4{fcs4+LUd83&`TNRM5`qG2+!fAB5stQOSeZp1< z2kaXhy4BqZ_I0(o=9|Qh>W0eA-VQ@#>H{$!rPa&S$#0hz%%U^Uf@8Q{D#xRK{w6V^y{%xvBKS2TX2FWA1uL?u^*<(BstEIX zwKm#DRUMw#Jj8>7T6I}ODir@zDSKJcql9J4Z|>Z#%X^7V?N%-C+;09Roy(TI(79~k zYjJq^Rb-QXu7?w>`N0b5_5McS{6kG94`Dk^o_+~GRKFJ!n+z)0_oW3J?NP9H75sLF z0@{>bYVMDTK2;du_ZJb7Z4TZAS!of$*r@rM5Pnahxu-?`UHemFSExp6eAK^+JMdu= zgfK#;Q3Qj_GNTCOl$f+mRfo&Cl3lEQ4Wo{3y$GNQ2P3dt& zQmop!b?D(4144YtFBf zGu3hR$u^1$Dv>BRr?|aA7njtGO0mr0(hucMe$Jjo35R52nLMO|cGQR+zmtHOp@zw9VT$BPfzZNiFM9 z0j5t>q^ny7(dTzPLuevfkwB)P9`6};5$TEw>`}eK3M8twDpbq|W91@JRi_EC&G!yF zh)_iZrsG(J2vSrO)X?UzhnA(T9uqal>L&g+v2`tx7D5Fy$y3wQ$v;>V1U_s{9q@D8 zUn39~O-=xkkQ#xwXm}e*h&$BMO!6%Ccx}{FA7l~3Z_mRLu8p`kWYbpuL&TrFdZByN z&WXHpJL(_-Yzq=R=F2N1Q00{osPw2YfhunWDu{y?sPf7PRPcT+I6;s31>}so3`iqS z<&}}Ae2`Y2nmi2BeP=T|r!ee#e^byZG#?;clP;NI6R1>bVAQKVc6>kITrG8_F+2a*pX>d9Sp;GiNlnl{diC8XFcG~P(^=oE4DHe{b~ZA@nOU|o z@aU4d5s%o0S7b!8>NFzu1MT5-1*5b`Mk*vVu6-j@_Ef|w$Y6&sFWNEuHokfl;Ot5mO~K{ckw{@@rI6;eAoIoFtqJB zaHC+12X&SdVB0fhZ3Zh zWJKo=Ml$oZEZk>wdf8_oWjk!OQCNCgF~E=9dZSGYu7in-Hx9<^D??tjaX5nJBrHNe z8nn@|jHvAIJsHRmmFZVh`Hl4}nVrR^-#B<9pz+mc6y`C`^r8PZ6fRj5CP&5@L&ApP z{?b79w;_n!Vs-lU>jv*F(;SUR|JK;3PQMh|@NF$Az2O<+uU{Rq(bdR?t39?u)=mv2 zRgZ@SA<`k>PXg%(xw`pR8wDmxoqBpaz;@au1QsqCCdOg(QqzCU3jQ}V>ae%0Q>*s< zXw|k?R3}jzQ`%r}<~nw6$f2mg+cWaV!!`~MgeSvdR!tgSUP5C)MGFW3)(HgUg)|f?fkg2!EEMkJ}|E;J2Gntc1HV?687$SR2y-jjg zv`OxYHoj6KcOK3qTP7N33sE_?xzQL2#WDZ4nq$#so+w(cMA2r}DB37~LTzmOf?AhL zj+Vq?jnyP}REPhZ7`=s_qtOtpTc}{usuykiCs%`@#op?q2Ceq#NXJeJs&zR@psOU> z6gGuRL{uYq{oSdEjOGze3ye9&8zPBfMy9x~T2U=}iYn5)2q=;^@8OPUbe;G1nJQ6P zNt}b1H3Kdb)vRZ55_cGdb?y;JJy+y7eWPLG)9hG@s6XNe5yBA=JEGx!E@RYH(J`}x zKB_EJkr=>+qH%)h9Vw!7V0+@z4Tl*BhQ;fAWt+=dP;2=l$5BzOI;#+I*XBiiC6eX= zT-=iE_LqD#y4Lv23_OWu?5$2Yl6kJD1M}1-J|K0hrjO)s`LxKoAb#S+p&Z?mXMZO% z!l}imBLvoVRMeuD{hq5mwNwVi_#+l2+WDEdNVFqK?$R}HSI76(D_;MiJ7-j+jxm7J z_KRhQb2(Ox1Rj%Ep*MFHt`p`~Qu~jLM)|>mMF}2kRzr@a%K@Ww7m2K5?3qW3f|JEF zwX$T#ZVtw_9zglp28XQ{90iE2vs_7uvg}W+li;j91bdyV^RdV~9yt`wEv>f7RG{l? zVY}EHX$=w?q9blj(^7!f6LRGNSJNJd1f$4{n~p}+``8AT9X|!cA9;wTQ5!^ji@9w8 zHHa@*A(ol7lTo6?%`4AjHI`;H>Vp{Er_l%klaGj!wI&oq&l=mpO0eUqW5ABRMn@ff zJPj~po+9L~`E|6T3F^Q+U_5}5_2u<((LS>AXQ9B=9|wpFf6Z=A-Za^@p=5L)GYA^w z+!qs@)>@Xm=aFrINwp-Kd4cYmvrCc~u3gRBCyJU)a%9`z5VaD%Z8?R;Y>?cVc}j4l zx@dgVuL{6ikpAkz<3Q1&zvhBy$0fzuLl_;;EQ{M#W~u3%83jurv)qDbWimA~$z;@X z<2k_2(=kMmKq-q91c=QY6OC*xdeKOB1KMPEf^99wf^DykG7KOvw3TdVPKgJwLdWD9 zEoDdhAH!+Bwp}z*ZL?F<1X;mDNtjKK##A;F?%I+Mh&_{|RoCxCSQF}FqgsDF#bUjQi9cxwue4iHy2oTTnvCYOP@(w%&MZC6msR+eiCI_IyJ>c}A_&j+!0L>Orcb zgC!Q{i>YYB2uu=nQeQGI9s`H(C4>uv%%M$t- zZ;?F`yVKTF#4zNc5Re%)bo*#@cZ*Pb(E$nY9iGChJpq0}q|B{&Xov0`^}}TN<IqI%v>=Ly!WCMj9F%5-W zk0C&a@qv_L&O2^ri!uGYmuMyH!77;t75cM1Vi(O~gd91M4l@|aNI!km%B?jC<$38< zyI5G{SuRtL5<0Zz4=et_^iJJ1n!w_gd|o4@4~yXA6X>HA@KVr8Z=BlykMyb9DN6PA zcFwxlh*r})8*`MLn>uEiL7?TU5?i;Vd<3!nJO(iMT96!%LiS-lTkR$olhqibo!(Ox_tCz<2!OjZtELaguDJsL!5N`1O(v_o}Ca+q<~8+c3~ z9F2~%)cb`r2NvS{(m@AVERk;uJh`rQMr<-jL?Du^=ZQaQ)DYjOu$l95K`|>K77~0j zX%E}AyVq5lJ&ZlZ0u*r`Y0sk zuC2D0{MAR9iv~p_6rea|FTXWqXIf-Gf`<>i@*{@=!V)X~ThyRb?nf$WiqinH6 z6f|Z_{<8vBBe)H!mDHa5L~T_2?pmrfTNyhUwgN!07puB68F11hgV8$N;Jh|1Hb}TtfR|#N31qI(3Ucpu@gn)%HiR>%#{iV6EKiNdulky z17S?S@)-DhR}2htdk75tmpAQiX;-a3Z?*2=XoR|fn1^b~<*CJpZsBOWT{9&9I!g~7orb^gwbqRCM$|LZHNY0^2Q`iF`vdsmp z+!>;1!}27oQnrHZA4N6#5L&)~LKE=Sj@eO5eJF652V!FmlZyeF693$vFJLP_ISg7f z?l2;CDc0^cIO6id@xDqSr*`RnP_(HRaz73|+-oZIQhjluP#7$}5(epDik#u0~k&sl^UaJ&2Sngkr1S!WJCg@(!zA-iV z5=J=W_uiDm8>Zg8gyDAnb9`V;C-=RSF54Xi#dDA}oqR=#&pXVBdC4P7#xZF2+&TwK z);Ue#cYIQ$woMq+_%PTgk#CN7fLq5v1FAK_2c=BT|Amq$U{3>+=H(O zktnEl>~EJ>&HoLN1Y0$+EU2Sx`9=13f&CQQJy&c9B`+d2I~II#rQ$ZL&Oy0m`=y#>KB6FYi1*^<^1y4i zS?LPEU(H7c%Yd}cZ0(g4w;b;kYlqpq+hFDY@QXDy-RIjGoZvyy z5mx733#8;!uULoQR?ngJU;Sboemg^ob#4o9{yM~T+&ti%I*pTb8=*sx9-2powbOj? zm*DS0#W>;*-lpLlYikJ7s6#j9EtkIxi9I6i5DfE=UROgov6I|%beR@=D6CE>CFg1V z0?*KIPmH#y*57pe8Cs0=rD<_t_N_va3##LLNOHkAs`xLCD*5k<+YJWZek*bpp6b{C z2yr*^syB|<5Jj9n`Tu~?mmeB+Y~>kiN;YJ;WcB%yjpUW7Xj2Uj*ws&#@`vQtP(Z$9 zNlcemjF^|P7|Cnl9Zrfyu^y8XuSyhgp}AjN$5FiUCoVKrqhtetuVqnO+G>3y&mX)0 zDH_$t6e?^+s*yZNl95uEo*eBfAT_Q2_HPKl$X6U;ZMxn%7<|K5Fuf0C?$CuY;zgZ{G;vdge5*SQFCyZqip~xul@*LCt@c zpWn&%D9lpHucqzI{N+F!(Tfr* zR`EwlJv}lxL4EWa)_3gn?8vacMJZ^C4hCYGlO@QOBl!*?zNl8Mjt0o$k#*(2gFl0m z6xDA0Na?J{qBe07IAgJ=C&AEcm*!Ej6hp zxuZu-v`$l}Z>E5So0il1XXFGLNZm&fkO*V6_Rptw{?V2$hGZb~_KO8;9Pa z+D}96$>)7r3#*?(B5x=imOEmv*vV->5#hsI1a&qYdC%_63B3anrgnW8)VlC|Fiya- zE-myu`7kGU_61Su@`Y&A7_Nm{sU04nv>T;yNM;3COD;T@6$m-4?J!@S(DIR*HY(Y> zo5MAo_KtU44*_iRa|Kw%WFgz30}A93*_sR4XkHQ_^01VJXNW#uP@i5DjiFS3nQ`GS zvOH-0@fWc?@3EL{fw&o{%&XsDT!vF;Bs3eCAc}f#S)CR*7n2T=gBIrzTWHeC$rjFp z9*kMSWY=6ArFazL?ICF*ni-;`R$NjZLf{!XN~F$-ybsY|J>0azXcT%sn4P<&SRj^- zN^WLP7^UI$OM!$LfR6zRBnj|RBOhh-LuPT0Dixai-uoy>_xfsd)YBas|sy6T70d4j*6aPg%)5hc#fgJu2cZ& z;O0@R-K%7X)Hc`cw`ewiKz{Ts=o zjHFa8LX;){QinQhel*(0DjhmM=S^UJF+Usy5w=a;`wBR9^gp8xzYnoqZIT#a-9Ia^ z7-PXKJw{QT_J1nndcG1hzy5W`sJSkLw5J5lKlTPSGh;P6Z2sZ5xm3vRyqqfE7Xhe) z=hw*w{QgpqNN9Mif8$k`(aGM^-K8%${%Lh}URgMPW5Z76y@t>kSgVzZ`NOd>t7TH+ zn7-9BDRGdkrkUcoxrKwrpniVT6=O6%o2ja8l07)v+HI1XLG)VXC!;#HNe)y8Y?B57&bP_8k~2)sg-DN+23reDP(%s(D~ER?wBepA)WkJj`D|9vJaG5XPBP z-(3)mX$xq+^(jMi?GkA&;&&5o5(8Fk?0TE}HfuPB+g4b{#6zPNc$oH??e-8$`20pQ zd&5Kcj4r=#=MV!W{t!u9wZ#H@UU>)dkL-_n zVikk_V*v_+<228R=b!-ptyviDE1Nur>$~_}rhd^vn$fjZJ+m-s23kRNeJR>W`ypvK zey&_wxauV@8Scr)FgQp6k)Sq^91>PD<8wDTS%F)BMDH zqA}eoZflZtEUjr~MOXw*mK70QkZdOU-a`{>(&XwqQPbSS;se=`8IbNlKWlO5pr8KT z{vpdc@IJk3>zg^DVINWO=6z9`dsKgaL`ua{pn0iFUzD%TGJc=f_?8-BN!H4G0q?+8 z4{)rve9c2mY@6@uGr=Nq-UCRn?N8N+CMx`$d{KO8<$gps6Vzhy8Lla5xCVdBgl0X6 zy-xti9%*A1zgq3OQK~n6-eJ2D%%xSG*wOjzu)ms_Z}|zWdp?LD7Yt$j~}$V ziyyT^^xM zQtiRjwVpa~*-=1zv=5IV9OB4pcAc%fEK6omQRXa}SSH0BQZ8w1#C& zTx|6NSc|p^bKRCc5{-?4(aJ%QTRQO}Hp|dAPdQ)(RzXdn0?l}yO%j)Y>h}dhtXRaX zJc*mF*FN`CrSh32&~T$4h(BDYTTQA+Q2B$8>J`e$m39mF`5!CX`B5mbFTS%xts_Xb zs_{#h8=ognw)k>-%E{?8)oMwRKkoex*gJk5MrHz3>f+0Q=46?SDpA|<%*4p)d7 zTYSGfA4sc?$8Adr#ks2sZ*zs(um2s?X6VvNvpokRMP2d(OSpF_dYT(XOZk_6$42Cy z@QSsux_&Lice-L3Y6vhcSPP8QlU`#j!f*0Djc@mhHDx$giibT_X>HyE|3K-@Ua5Y! z!78$<@6+BU$i1$Th)};!WOk7j`aI*clv^x?vt41A(riieAa68!J?k|TNxg~EK;wr! zUxob>_9^?qO6Orm5pa#qRd#UNw;EnvUF-^FqxB;V0^ZckFLL<8z#WV!YlT!1`=+j6 z<{h?}nxzA8z(ih`aL3nP_J&Q1DpDjW_{5hxwb#zLBH_T7{nr~pOY8Syj#LBx zTiJP~W%aeyNiw&;>=kQc^ZiZ9CbjLGVmr1-Y20x|EGVV_Fs_zHdFE5*73!7eqebfA zamkvUt(3`A6)R&{*F&oODR@4N?5dm`;>@z{OWM3WvCbw*88`YBBn5V4_$?T7$YExF zQm5$uY3aUK#6os>O>C72%60zKQfe`|8Q3&v$$u6{WBU7--^qz+cVT+z9lE+q(gb;wB|PA(o95yWE*@^42UyCYMA;yZ!fTzYrF8vN%r&B*V*QOw!o<= z7V%J~R8lv*7LBQ^Y$OY}bOAmy@O4gJ^H#d($b}-@`tY~iAUa%$Ds4&`(~To;cmwL@ zLnEk1FNfW`@>Ti?v23(okvB|HJ_o(uc9J8Ht6M`d>)VF)Z|{Y z-|Jn!y{4#d_M$ysY#qUiT{p0{O_%uZxcB^VwQ>59X4d)idjT8~mxwx2qu=+NYqPW@ zt9l?P)&kP-O&N8&4}2)vFrD8V=#K{FLSfl+;^VR(`rt)$Y9esQSH_Tw=YJiIsO-M> z=#}_hK*vXZUrlAjEq+^2ECvyV!d^V|W52nfu_fZb{vDKSdkC>5YS1Tsb7KxE;SpXU z7ft9%M+_OQbdh#8-L%b001_DLr#}89`j2|EmhE`(Q-V9d@!dbe)y41an5pG=ZkMF~ zUHF0d|2wu`(>T5nCNz#qFEmcaD(J@Tyx@|~xX&oYdnT1Q&vYTryyU;~%1hda0YSE- zq}slSirmY6zlhqKh?xnt93h@(vTbQEgc3}$q?_-t+iR!VCn80)Zo;{5`zp6Yb|s*S zmZY@N8I={P$V{}@xVS5uaQ2sILlU8&MMeU1)Y>nFo|u3HW=S~qiC;wrlNBqcj;KnG zQTKgGWB~P=>Xisqo4dwz&|)E8>F(Dhq&L74D zS0d10^cp=_S~Y)NCb0#z=js|fq@bGwJC|VNjo(oFhe2j4qPX%nBQW)=g$;=j=z-n` zHDw$v*_DV|yYE|2NYfyb9a^AkeV1?$)$IpYX=G=NClZdpE6==Y{x%xh-6Q0x{bylf zB_xI3-+`_ba9D=hBroNa{{xzk&W!yEz1tDXY}1Z!rJZz~wvqZN9GcoUS;C#rw3a2m z^b4vZQ#IrdrT!AXR1C#Tg?G4h-+PUd))r?Susc>$bK`_v>Wn<)_uOc34cr|NhYBu!nHQ)g6rU39t_x)jtyO^^k2YpQ0*^D&Q7ty`qxVx_(L?X1tMefOYnzd4#?=W+a-@V*2=?aXLaSX z_m-$St1C~~T#1#3d7S1-95`onP1^{cRN994@P{MU1d8=eVpuGxlakO-BRT3|3&JTh zx6q*$um>G$Au$$)Ti93&inTG8U;QeWUtR?dsME6w9|cqOGF3p(Z-V(RZ-V8&JPDQ` zUIY&q81yTQ8FSz!BgoS-==c*3JG_H`Y%+1Za=@~$jsCu}D4p51CnrsWM&JK&8%|jh z)%CKu-Pz~zqOFu#Lf8MUDwz-2k_{P!C?k*wTXInxrCdrq)-}1Ge3nGBB?dxi?`BH0 zd=5|RP!D%YPL@d!2E0jfKMdPsuopx_%$P%gbf5AD!aOA;y6vtT^9tgfT9zfkc6FLK zwdT6yP>IrP0OvC5wPbQ^t=$`O*zyn($D$09SHE=EgGj)JfXu5S>&zfu{S8|LB}Mf_ zBcQ)(fUSRY6vB@v_2_j=cfCje%R3T zy#@tW9>WqNmu_0T?_9rkK|Q1|S=uBR*)7R$DgGbIHkxzIZV3Yrh3qq&%y( zYp@VylI8P+{SNQzEkWK#>GwGF$*C>*_KK`dr1mMV<3DB~;WtzggVxgmR8RFxwn!P# zM?FkgKUrh@GBY*~8aV)Ahm$g1DmxO**qfEH59yhiwZ>&^-Z)C^4b3=hBjXI_yz(;_ zGlQNcn=VH}0B3JIX|=W`sV4&4lR3js-|xv){JteA%Oo)sS#W{rQc_R#_Pdbwg0l<0B*EG72w{Z!t|i&3!Aky2+GNxY&0bgX zXX@gdx~_)Ih_1YAiK`fwbw3oKXSQWykop4v3t19m9TFpS^jddR#i z1B8d)x2XlB&lL{Hl0pMC`2C@`B+Cxr=()|ju9g#)0(uVN(Xpf7wwSvioDldyP&Zqq zV}@KC;fS!*(00vZ1RXWx_Eq?!01EhS#sm-vR+kY(n58rflt>;-jYDY-8VdVtN)s*S z%RPMJ_#SWRhL;jXqZY`~Ku)_=q1J!7d9wF#OD8kVAdGnEP}s7ajEnHeARyefeR8v7 z+>LP2JQ)|wlX2GMjEm;UxM-e?eU6&SxL}@)3+BnVV4jRKVrQIdfe)Ncj5MW*ZN#h> zYeuMPBgjk(d3*b_Xdw91<@0EuV1q<*Yf?ifce~UdM+Nn>Y`sJmO1*>^>UN?c=|3bD zhWP!cgPR~Io;@i8EihDpxFt2c zdvZ*FkIrXoE{{~k>5E_ww(MTq1D;F$;5cE(!JKJ~fpj3Eo{^|lU{9z&gRjIj$@f3^ z)uh-w=DIJ*}J8RRYH zuE-k^;T$r!oQb^j6PSU#PIql3;TQK*-zpg!?kVkp&841T-OgjnZpqkz5(ZoPlvfPG zZHHuhZ7^eBG_w?I-pklGBCRawy ztrCQ!&lOcu_BI{T4(; z7&a5ZfJFr9S!FbHfR)J!-xhGOMaa9CaCRiV7I?uTfM-s+0#CTQz>BRyK7wkb9Mcry zwE*=Nh(TJJ6t*vYSIez#zaY^cc){10S*{5&^R`8lUV#>_18CeTw|xxS-Vyar(oB}2 zKG{CWL(Oia_cB_aZ# zcs;2$zbDxm8)(+WdR@Wynpu~QHM7fNI;(!cY6y&Q*KM$ww|bExK(XL?K}yZc#ZXN2 zYBni&H7NN2ye${R7Qup<=b8DiSJ{MPU#l7D_E74Lgpmp@Ljoq;>o4)=FsUGGY)TzG z)MV@HHa)nBHfaI~=J>Zwn?Q-<-_CiFaX!V2(?T;&3(YvcM#d&O1f#4%nz7lrDbeEY zgf{+ipiKz9lxY4Xe>lO{MHppVgi*#t7-d|95o@=^H63ykVq6wuBd1qr5*$?>0?CSoSl1y&HqSV4er zBqIo9%u@q~nM>+YIa?6?PGO>u*e{#?LeNQ= z76+dSuvVqEGzTBrQ7!)h0J@NVcfcg&i8qtPn4{*8>Dos?b>JfjLh1{_ zig*i5nn2XHCEJJ*6LCdYy8vNx`|ZxWPk*y!U_&N0lI)I5D`YSFZI_8%8j|r+RIqAm z5y?1loOi{l2AW}qJL7Fv3cm}VJgqf496z@N< z^!H`e_)9G;{J~l+%`4H!nRsZBq`N2<4eVhcK!}FVkj3CWWYu!aPu`HCqO)N|c72b_ z6NdPO7J`sMkHHJi)A_Ro$BbDN$sm~fqg+XJ?S=vN{OTbqQIeAPpI=hQS8j@@Z z&n$)Gs;M`kD$v?kZSwN94sZ*LaR^O2bHjmCuzqcB!t@7K#Tiy4 z>5IUS6Av&{E!;_XG%J?GGy0Ik0Mdhr1$qPxtNta(QGrK}Pz^6!A}P;B;`iZ+$%Ksy)gexYS0h0?5tEo;s1Gqgtq=JCMNn#_ zVXzXFnh@U@@iR!fU?D2CJ8Y%n*&4B*mG@ALEi%V&F{;ZMl{M?V7P*Obp}v3@63bDr z77?7JU3eyH=4Tf5$^(n&#G-?b(n~gxPNyO=6pIPo4kNMc5nr@1)TDz{FoXxnOEfn_ zQ9dPsDH9Bh_)y9Tk+~b?2^xD%I(#g~wdfN&J!7s(hYB}w9AA1XmVqVRsSF$(3Qm6v zRc?NIr^RB!#stY(WMi~G;$wrjLTH!`R5%(6mx)~z93u>!jU9^Eu)>DoDiM$Yf?SoUeqzoFHfY7kdhA?mHTwNrd~EWs z$~=Qq$RGtKB<~JLE>>w2Ta1Ze^>7UqoIt#R#z8;yXrXqAYpGXiFv z5iskX`H?5d!ErpxJ@d=TGr#HbbRg^A`DLADkjzK6o3jjNon?@uK(5Mxc9ubs64@$e z86+Q!D{;)irmJJ?ML!uN!@JPetaIyRZ7L9|+^qG7;Mm2`V2WXG;%TTJ{FVh`Yv?nn zZyOL;Wd?zpt5e~`<+zY^9^8TaNE%#ynw|qpU2O3FKlI zm1o5*w%d6|vd;aH84A7&DY}T{M+x6iSh*ct1{b;LGI}S(blC&06$%=+HzHWGz&hRMP=E>|ophe9GsN&uMnt8)m8@ zalytYl4LM`*`SsVwI^mfKW$!XbRFzJ^~^e#XV&SKS!bP-z0k(Nbg0V6%Efw`HP+7Z z%8m6j9ou@HIus58TE7dJ+)j zyaR|sm(>Ww(4z&9p9~QUAkO_D(hb9HG#?C?>);LE??clx#BwE;zF_QKtMqE(>OoUh zJOut~_*0YSz)=&~^G-!mK6K1BhXaolBkK+rp5EOk5FIlEAZ785n@wbi24FF!jyg{OXi^ zdl-0eML>V~!o%4*b#s?wi(Fc|bT^=5H)sB}A)41IzCo;EhsdU8zKpLoxMF;)d@s{9 zhHhe-3YI0`CuW~wYJo96`A4L`DXd$D^i=2C;p<9e3iMP-?lulgpV-5dF;IB}*QyJj zH0^@5z;CcY1?@gPSz|`155TWh1p8jA7R}Pg8|njy8J!5)qN2v2P$5uDriB<(tM)(D zv2Wj%J-zJnO9DS!Wf`I;(irS;e!?DxP&#@vO6o zXLSVFbdh6S2w2vIfMs0>Sk^tf&AJen5~{?VK>>E${sX!6k+h-A$mUzsqe*wL@qR`5M1PagWIOFu_&c&j_l zAhley`gZ(9`mYCX)d(A^U!3!jixGNs{8w-=In2k#%9IJcJ-m#5S0n+%B|cwiV9N)Z zxeTEn2iW3_!_BQ5YFS0T*bI{6$?+r_!bLF*2JMa=YuW|U0s<%DROOL1KtAa#q&M{G z5KARiq5vWvc^3MIpTQehjsLR|ed>d@eEwNx8H#CK9SnQn=zQT>H;gSuY<51tEpqwJ zv3GcV{Hbt!Vi5E;Ys=gQ6pl><-w;lOmT=}MxozQ40e)_=Ax#wbLx@gd zTMXy9A-o8!(xi&P(irwCbzU6~h;S^iI|i%UvakUxAs=_p%~&D*(bQ!x%DqPc4jP&d z%XHd?!Um87%YWEa43qv4TNE~c8@LI=USg*V7PLiS1IUpL<9eVFSS`cBHh>#gY)Z0PhP^fOK`wk&J_FR*R}gV~SQ_!MJ{!iF#-45}f3 zNxos@b!!;7A;bv1)H$`de`3(|P~jsHs%3*NZj=P0w#1o9a?a0@a}Q|9f$G{=c1-?L zS7MD~q&{^e)+k2SQ)_R_Ia6NFneuYZlt;=^+s&Es$V=x+9B7xZE9XpkB>A*$oF$J0 zc&@}TdTq%Qdt1(#@^a3UmvcdWIcLfP>&Qs}y9$FXcxxj$)8x{qS${RQf(HG8PEp=@ z>AjryMDwsR4BXIt2xEwHs$+3tFe<&LfD>J8;?S^d`ly0|fP_^<@CK$27fq3M;SeO% zwX1e9d4%1v4l(rvsHdh_lUnGeCw;f+&!n_z%a|l26PW=T~G{0$`v@W9-~A!YY?D zwp3%g$T=&jK+v`@^7Dt&5NkYUE6;>NTjQw5P8_r~L4raEzGfC3T?lc#_$;xRWy2UM zHRD{v^U2bnXIrn1eWM1k4Kr~Jpy+yxu5W{#vVOXS0SDu9tg+S;?C9)4y|G{Ezy9)d z)I;VGOjtFZgUqF$nCASz#+(Zg%(?es1Yn3)TOb4|rq-M%P7SKHsZtMh_0wi4;lXn^ z#9K&9LJI7`58XjzRm|P-b%?1l=bH-YW{)R~38UDWD(eNbp2XB|qnvvB*_s}z@kee~ z-7#j6kkYdru`q6E?d~=>6C-dWhZ;KQ_!z8wbkgcQm21=!1dp zCkgh%ZxD1aL6r3*t(Dts8>UyovfPRnn6kE*_GC?wcDTQhI3xm zYAa+Jk_pnliV<6$HbItK$$J$UFE;h|ql}QIH%fB)FkVdWakj@YD3XE5g$hG_)Z(iu zs3|#{2+a^!;ij92H+OhF-q+h1S6_61u9zjJhnK?Hi*n9hlyml?oU<3@oV_UL>_s_e zFUmQ4QO?jyN}y)rc%kCasbFW7Vz_P)W&XQmg7eB*&`!AxTzsfqYUx{~>u+^&bRs z4g?x;oCDSTn+e3^>FAVx5rK*TGEtoTK@{geHH_!$QoSd?y4pl=QcVP>0MYNf!Kp#W7Fg%3d=JQqq*?01xF#~V6T~Z43Z1IC~#RV<$3K4vp~;^jY@t; z3y#g2y1Isd>s;tSQM3LjG{S==L6@vIbe~YK&6-|2!!2^5_arYCa)S@srgSn#yU2VjW)579GH22ftDGzGkGd)!z!MxN-C)y3?5K^lp+z? zG!NsMS9IR`m5yd>fKu-_#m^H4mn0Orlk+O@w~A+A|xI1LRlOpG+mb zRT4Q7KPaG}nn~;6ssmMII)P3UvW9M6dgQ`LGICewXfD4U9Fq+T6_32qagSaz!!r@j zgGJf6N3WfE^?@!Kv@>CkwwYT0wLbJvN@r?1_qJk_cz!A!EKPv1XpUGxOw~nJ4cew(`!*!`4c~ zfn1B&jCC4+k&or0cP0ReEik;BKlCFEe)S^^e&rE{zKvw5(WqlSV!UaY zbMS`JaykSlQbkH25(Me??+qu7(HRra$$~_!W(#m7le2~$4K)ckS0Bi}*4_BhfFa8A zbb^lxxVeR4e6U1}x{WmOG-o*s{Wt{u&&Pe$c$Y>)9(L(lZW4wui!jayq;^I&$tG*h z70VdUGuZbq!ife#5*qTxa%Yr03hg0<+6xm~-Yk4=aw5@(IeU5`Up=r#r7dQ%HNm~* zdSE?*3opEf4=J#L!qa8y!BO$N0#g^Q#CWCm*|PLduVJ6%Gv0!^jd|bZARkPyI1s)Z z0U{O(VeoEzqcS3K`#VfCd1+13(Qa-2;#|;S-st&lyy}9+=x}!g{1Ac(^pq{svFa>U zLOPyhWaJ^hFS*l*tqrf8iT>k+gLRvY7og$MX~SomK0D*ncDQVX_`G}en|G$XynFVWx8H;V zJ@_b`h`FJP48A$r8n`)aP-G8GzaE8R1-oFZN3Ze?M{i>F1P&^w!4B#D&k#j=Lhb59Yba~^c%4A)f`4Tu+K`~qNX9W3xcUbBUA>e(f z31Vfp&HH8jeJ9n*~HaE0v7pztXY(&1LsLoW*24E ztZ-4GK6P$jKPcx&i=Hm+Mp5&HxtM|`>RKj-k_PThh2Z2JDEW;Sp z&6}1yCZu6ZwKS$enOFG$B?AD*5>uSS?zrKJ<=n)qpyf?Wz{K=k?5^fmhJ?rBENyvb zY0JBmT+Gc-BV^5B?~Mf=INrUp_W*+641RfM)dNY5{EcECz)|iqo1quc-hDukvdhvI zE+ST=8m>Z0eeyV;H`GQ*-+$-acaF=sby>S#+Nusj)oSYNa$mR?;O?OZHgsK&{%U@$ z>C2jt+8nJeV5FEXAC4eJziwD`zczZzelWVNWCeASed=~4Xa2O`PU6cGjt!HyNjD*h zh*fWR({D<6=x6_M>r9sldzvEq)S3qc&irZJyy8Z(Ou_ncC~+_6t)d|m+_vG;t!yQE z>@iQ`okm(UWM9o*TC)Xa;Rlzp>-V)LH&@>+tr@7kYfaWq&+7r@0mA;}{OiVhcwjk@ zJ+Do%wvFX{Zow{w-zC^6vq-1*I0euy-dPiEQ2BI_&1`}Db#_W;eReiyXK6O}Wq)$Q zJ8?WBs?5YL znm#u8fpA~@f5whLapGUq(e26Ocd>U1E2wE;1xXB8_W!n{6(?=}&o*=+TW<%#&{RJl z*+OcV)&a@e5v|@CklbfCQ<*V3uRn9a0zLEc<+Yn+vkbMltYsN%qROzX{o4|^OlWfn znOr`mjE&TA*_d21CYOuJrDAfKm@-!L$?($cq%D&Dx7XY3PfnI@CTDjgV}l@E+L(-$ z_cB)8BX@U=fArBw~6d;+uRei ztR*#kSzeD|-ly$Fy`hipahiLZ=ANeE2QcmJ_Q_+ai?>d;Ot)YxF1hzU?zvCa(hT?N zhp+z{FgAOu4U1{xBk5A^FG}WP7G>#)dz<3oV06@TcM#u2J*zp#Cm!k5<|2f%c5{gj zR!cW~Zt?Q|%VW%YqOxGmLA6^bj4_{_6)`o={SobUc+P%)%d+B15a`t{= zy*2G^Jdz7X!pvpMf!E41u!5Qb`>YUar~N+}83!l#P+Ja3HWH>j@3O>^dv`)`0cPgw zSfQn^&XMQbcg}m~Ty@SrhvKd3|D9;&YiMRzOB}8J$=@5<05g^)oH^1&p7HO*H51yL zShD97g`Lf2JG)KZ?n&OFud{SuQ8C@^ z+e)j9x8?22O0;TKKMY!yRjvG}XBQ>9s@$+-!*p}q{ng1t^y-`tVI?Sp3OgCQ!+CrE z^VXfp=b6kTtZbFHe2tIp*>ZE@PUPZCc}6(NTc+lOyS(+HIvFo-U8s5MK{X70uQtQ9 z<=0NkN>T0z^ETF=Z`YX#Sn`y&5Ed$KkD^#!+&Vm)o3YI<<427@k zo@uCePed;*dD-B@f~EQe>y9XB>1l67Gs`RsmRS}ovn*IsbHOspf;BYr6*vRf%8Gpa z&HmpGNJi+RMbFiv^2=|1W?2lVyOCxfo8E zE?C`x4@;TBtxi&~_*$^S8Q)$~r>2vCw&+*1azW8z2p^x&-HSGyv1l=duk)C4QWGrA zB+r>{4y>ac7wwXdD4#ipVSB`sPkDq1WmS}ZDBEGk+oDq1WmT7p%y1gpq1 z$T_)W^AL+xMayT4R(LB~;jL)JmLj2N59g9C`x=r`w0yQ`W%Hutvqg)LMJv_tc^9*# zR=?nzF82TCvhXn%`~QMkmrIT=`UoIh_0=vbQTF_cmR=R@c^CQo$8CAY?2cpj*jH8^ zJSOTj-G?M}(m--*m?bDBixMS^3Vf$R&*%T4?$6_DioVBTyizVQBnc@cQ<3IdU7|r5 zQ-)9}O)_hekhqmGLy_TBhLRza%w#NOh(yXPD)U^1OrdA3ea_)H`}_QU@6Yr7zMt3Y z`A65<>+HSO9@biW?X}m2mniVBu#P`QkBn91!ZKur)c?H`!#IUXrofFkxfZV{Bvm-jS0yGH!0bs}6dm#-QQh83(p8Zt!K?;KO?j9Gw3P zFWcEj+BvYxO2&;n& z=W5}!6(qrD(b&I2PO(~+Q%<8n0(=&i696)9;mbHhCF3RpJEAkN>iSL!MPrX1+|4%*htWRLfHMKlvf-BK(?k z5mdl8!A&)IMww*-ey}3}KUj9mOy%4>0}%fiH{&41DLW0|2fKLT2irUFgI&JxgRhzo zb~oh&6cq6s@n>Jc=c!4rV!qe1K9a$#6^yP9zQzCihp-cn1FjR;DJm!=aSD7P-wm9! zViv)}$lZ9BcyECzpAXQK_Zz?urW&6KR<@O>|9|Hh(cX^Sut8o~w%^4+g#Cm=!1mK$ zKNCDdkPlCjw&CW189$HEdA+>9#E8$AY{m~hWa8sm;s+n{sc;b3E5GS4(E|4vnrV>3 zmM`G12MAvH<7?qvK@dQWUkT~OuQ_^ocbMQQJ8nWj9!jn?-brMp%8#=d_z`bhYkZEp z#3kqPI6(jzWVw0qKYfXdZO@z!Wct7TA>_pZ?Q)ixzb-w_N`c(B+=7Ax*j(j&%nc+P z{{QRM2fpwBUwQR`?=U`u58h5-_ayj=0@pwPFaOXM&1{_N z++={KA{3qBIRqh9(nYja{O~99wcJoI)e9>LWW9id0F!3E`ltU zoMrVlizOc+X~}C}xE0FIUbyJV|KKDiNleCO4dd7Hezi9D)Dlv!Lk~h8tnK}3+ z!ylPh^2*tgU#GnP9a4303-&+C(7`!{Ae{%d7^U(*zyAKhrI1g!^&xhELV= zKfO-Eer_e_H(C&p#esMo{vY0Q;J@MoJOmx_5N;On$5pT|<(3P7Ug7!td+(gE5GGGCp8Fx3BiMT!{k$p7AEiNP2u}bX z48ot9nOWKM@gV$x8N77Bi6s7n3?SUfYY!*9Mj@Hc1OLbKMqfeY<&hi(w9g1^~@L88KMwqcmb@SC0K;8~Eve^^#w zBEfH#SD4c9gaF%{;Fg5nY{TGDg5PYz;GBftEWhBMgx@T~;Gu-yY{THBgx_q#Fumb7 z+c0cd;WxJHF$%&v@IP$BV9&yoW*de{48Pfi!EXt_*@nS;#Z7zo78_<4ppPK?lr`Q&Whntr{%RY;SFdhAbH%VW|z%atOpx#SD=sdvYs8 zPz-mb;VYIIA=nJTY<~*D76@iJ6oTPi1GLdt3Z;+_N^K~#cX)_Iy)lvm`DFS7z=xs? zg8iYC?O#D<5bOFg6h}egT$M(Ds5nen+x@w0? zR6N-J7nUNW+#(l(Z4gXR4zcb4rYMJZ-#-8u9Uxp9im5)8K^V|5iKYqmA*bF2O+k=3 z%m9jPxV<@Xn51`OBn0AlbD)AYVtT*_&*VcvW9$ovXYK3)eeq$KqzxGmYa7N50FIoE z{kKVcRZ9~s}i!&P5@sHX!&*g`S8T!h6IOrncKQ;uwKn{r_(P7Usq zL2M$zLRg_(JmhBZIPHYt zuxyZEPQ(c)Gl$o!hf8{sMa5bC!cqvBB~>FuoQx9`Lr_NpR6P(z8d6+~`xkBt0+^x) zu7mxFyA#$WW5&Bm(gy+)@P2`~F1SDkV5%<21_5AdjNsn0gPTMXE^m9dNqWmkl~m`$ zEhqSv>U_9c1z@W4A(&r}5AzdH4cCnTOp%My#+;LW27;lohG)D-z)-<$C@81qHw2#b zA0g4y!H(n30t9Wrr6mAESUA+si#uNu78437!r>XrgYbcpjVV(!g6jS2NF#zS_83T_VF>a$ku#vCD9St#} z@DXQ-{pB8J7_)wqq_+uD!Wm_PQn=C#V2VJ{hPBX=4$?uX2z+n?z}Ad>w4|*kXUqxe zgtSXgOwk94gY+PhThyWWiUfeg{S3p%tQ`$f1Dm4s1&j-m2aPkP?vlpbd9#23xQ7cL zi8UK^D1xb8g`2hj7Oz9N1CL;e3nB>qQ6CcWd^02o@^hE8?F2bJ^&m^Tm`iv-0l*ea zjk`p19M#=$bp}es(;VME05HV|S@WDNE8yCC;~0sigsf~>b8Fx~jKvs9YYAKl)PpqR z%vpeNTQI>_kbfLXsfkP0BeyvfV&in7v<^TJOc4qfeNTO6!=DWlCus zc-b4Ud9CwD>6oJ$=b!%;5J*-nrGwzvX~gEZ{JY>F>X-=|E78!hAPbeVy8l*Z0SDP> zW1-uS5lTD3^T`Mn&m0I#MzDD1z{}Kz5V9ZPe@Iz!2eVb^$x6*!f4F1z=R{d@!{TY{pbWo$Zl8N+ZGv z)bUmx5;Y}Ia(Z58zK1hxZVDYlRY-j)$i&xCU2VklL;R)w$J}@&-VeyA!0t(>j z{B&y*qT)# z#c+LIk3ZZKv<;SMOFxO`FsPJ2@e`IprTqDy5Da|qkHHARqzTBx1r;(&{9r3iYPDuU z0Kf%-3D8kaSaL2CAsB1nyeEIbm~{xi;vUB&MgSJC0XXMCuy7499sMP$)Gii|IG7Rs zK(3p=M5T?mui-iavk*#$k=n$QAM&$eBjU-A8Fch4IWLTW0l19_U`Tj`&DHsXD1gPz zKfol!lQOyiV9wR}|1ZorDK2jQX(r)Eu&DV9DgrPh%K>82O|2EmD*P{8b(yHZsER zTmIN$n9~Hn>`W3;45GnwB5cn|8`OxPWZ3EIGoF5CtZ4-|yxt(qw5&6G}rNh_S> zs4d`53Otko+KhZlbu=vahKVq}LW3kKa!M6q>IrC(q7Tgp{(g~wK1k{S*NZ6n(7NDn z9|^G0Ma4b8!_KcJNUtdzfiUSolC}~wW8v~CV=@UvC`CDu7t~Hh3b_j4E3rI;TQdlz z7=cU$02WVu$T9<9q2gsmOoIM_!xe;!r4C-g2e4S`;N{*w7pDI5jW_H8EH+*6LOp=R zY~t;80Fw!1D^N*zR~_JDKJijGfW>^mX$+$_8Kf?@K`COq84X~HEy$P*V2Uj?KiD@a zc)5VX23dv>OtFRb1%FB|aJS&4ql1%S$>P?Rf6PMANsu0=5(y@iQsVAV(E|DL!y3%pbc8TE?v~e+X~DyqF?s$;3^Ow2|Ycmp_3QpyQ^OKaUrJN#)cy z;1-xas~2JeKm5tP01Vla0L=2!TnLA^cqEz~a1YEsyCE!X^~$v_SuD5fS9?t=M) zf5BJqav6ZB`Gh-UKBu`5n-ENm3+|ZtFad$IgOeks7D#fz%`l(+Tu>XNm;ta@a=}>< zf~gsWaszG@GJ4a&*T$WP2r9#E2qftf2}w8}f>(r~S8&BcZaz^l91H=N($a87gkbTE zf+HdXi)R#^79m*72OJzBnB_zLFQssZgmB170*q)-K1Dc6V*I8{G??GhLGx2u8%~t) zYl;!vGxOQo1#LlAegIR9pks``MJdDvX~|!zBw$uF!(kGmI0F_fy0iIM3BhNO@Wcd) zJK;`*zjG-pCbilyW;1c!Q`;Em(opkaEHvxRRrT zjLUf~>?R^BC{Lp`kriCLrl1ibD=5#SHIWt6Uf3GX*rc5P7Lo*hw`%NY^rvwtS%oBl z>!MW%P)uY7rJ~`U8+;{H(Wrz>t}TRmB%*}U(AH>~@QHZ^{1FMmX=p|>6#Pqv zLnP`FNb3aHR*YRJ7);e6k~TiLuqkD0jg|?2^;cLcQcNjdYqU)Gq`rT#ZNU9DGE|}= zw;>{k@VB90|iC2YS=x#m@s}M|@q|AF8$N{w`9Hks-L@Y_* z<|1=89J&lErS`UPZxO-bISkhq5iC|ZHt6@@^NtEAgQNjwv)C~Mqfp$TaHY|A7D^~m zC)M95q4+e4f;w?C18IW9l|d@@KbO&k*vJN@JK@?Rf>|~M;=snrW@7|+X|V~=Bl$pk z2t_tJJNWDDf|gKBf&D3_3&j+F>0O8oGm^gpF9burNgx2{7#~I?C7-f-h|Y@{Td zsf>iJr&y!O;CQ`drBGZEBItfg38ghu%h;qaMu*U;>9gPlY=B` zg2vj2_b6}=l^FpAc+kTqGZ3_dCI+9|KnTVvsV$=n%@00?ONfo!QfFf_vZ(nTCTR+Zc|95zT+f;rc6*EItwgFd)-P;Un9>FRi<2{G z17sf`_a^*`P)hM-1~(7q!*&{O-y+RoH3wiMS*+#&j3kTqhyaFl&j-s18b?!rkDC*M zu~W&G(ea<5fpp^lr$!8I0X{{BpcWKC5M#&K%hBi%t#G&mjE#u(9^MT`utrt-GLVH ziN=Aoc+Uvf*amk`PJoTZfwee##SHvH2o|UYj$&}^sVxMO@`0oY;V3~tdD>=xabezxCjv} zTcS@O92dbNgBHF=R>V3SuDK&C;_W4Xkri=}3xEmDWb*yfj}ShjxCo~;k|b8*@R^J; zfnvxmg~inTLO+SMcv}jS5jhqgvI3a2K}|38npjgB9RjTp%-SY@4Fw1twO~q-B;0_& zMqWJS(N6-~dI}7Uz_wltMxUw;7n3d+c=Vd^*?ojy(j+@TLXsdYP#BD^1a~Bm{D*11 z42C*mF$^`zAwK<&pd#FL*ogP05dMm^Q%W1+PZ2Dp9Rg1gEFKfM=Z|1^atVku2fFN+ zfX8#qa!F%MkGy|5bRwmeA*d8T7ny_*YD*{<3opnD0N9k4hA>hDiw6PXMG-7u1hVZ) zR01Jg0KzFw@GQiJQqvF#ieT|FA;Ez*Vn;6o0mCu@%~KmM(R391d7%`9kqxD@As`gM zl+K38Pv*c<5IPXliRA)D$O497P6ShYpct_cYH1FeG(z!#o(OPph-NB0*o9ysxr7TC z0xy}7%aA5KXyvmv{hewMV+mk!lqu#|Krl5zXnydio&=Sk`N3y?5`wWwHp*0}Ud%Bh zgHH@4L?>-hoI&DWJ)DbZet^S8%s84KHk5`pNArVEE+uFKH#~fgwp>cppZ{*CB#NXDE&_Y z3i;$$0*W!9a80~KLze^;^4YNdRtJ%LSe=wfUoFw_;csIDnBA zO5?+WuZ-CWiAE=g3WRb>$6H_!2gu6m1WDUQHXz5<5+xb~ZNyt|(A_8xD4h<`JO~!g z9}*e|;ri<&ZQ7G&#WM&3cs8zt6#@}E@V(eajMwoIEM5wb!W6;cHBMsVY{VX8uq%*c zN~Oa!egu;>E?l(`9LH<}njjDlg&Fio>3X0L@{NgRKfW#v0p=InuN{K^g4uUDJ z(9pCI`TM4B;-#fKD!086gd#Pqv6IFk}5vR1u#;|>i>VHrX@UwlYqU7=B!NYkcRJIg2*V9 z4`Db6{yRuqXQQdh=cp4fhT04~nBt*9Q&+}n{C|2CZCyUYouC%9b!C*whs+4f2#_pt zd^Hftso94rQAR0!e3DgT1R0|?>Xv9Qb4m0BdjN>rK`>$LpI${jAfX8@Y4Dti zImey6jMDm$tpUN*>_Y|1XXO)+igq`+S*f~_1J(rir&rM)CprE8ai!r)tN^B@1!T3# zUxU4hdRivFTLOC;FbaK^jPpuAp9K+64@!^z4d%NA!NhA4iO(Y0~m*fas%M&hTDNfeASMzH;u$%M0E-0>C?X*eb3cm!>jO>=Zo=1e6)K*0eB z;+}-e7)+}aBoe(0fFSNkINN6I2m-EiK%j_(2<{LTfe=ZlV>pCn(pUsSB(({LNK58A zLBMqj#}5>d@a$d#i$I8^lrCn8H%Ub?a85OoVd}ibz=9l`I13YRV-J=fX^@%}6A=8=(e@NDNtG5eSi#{)3z!ObClW zh@?~=?j! z#TwAOfEvU!!a*eC1_)Yk#)t^iHrLvWS-2Hx#7!q20g1#YoDVYlNej54#KRy8!HTJ5 z5eSXcb{3BDm{w^>BX0Ac28u@5(Afck773_?6Cbev0;flC8q$caLMW$bw1oG+NDH|8 z0tAXiIE=i`A|Q=0mSQHrA=p3=&>;v26pe6_Ws;6Gq7M*Glqedd%!G8L5p^*XQ#69o zO@s(<%dr#4`uzC#oZ1 z>D#dggh)!;z#$S7LJ-K(=aU@&HUF$(>8G&>gh)!;z$p@Qokbu-QrZR%j+h1(fe=Y) z8*3ZT72A;uVqAb1LEKR?c=4V^AQOtxHgEvMB(eyE21?sN%qEk^BCs@2!woM2*B}C% z=U`7#+6E4E7~LHNfzUu{8#u#Z+*ky%ZYXU7VV8`YMIba#+6EqLVDvl7!`QJ1q@O5dV*^gM5Eg;ZNGTgQmtoQX zL5qZPLK75?=FGL75=|{QWI+-rT?5nUH(O4YKBa1)+;|s$k9!;VUc6`^P;UZTPI{SA zG*F(vmJ`uI=^2=qDX;Nd7BP((tUX9$Zxh@`X(hI*#4 z2!u#V%YgHexlRz!^#H0;Jlq(_*}x(YA}K8cK1IeP8@WIS1Jpnf2~J~Q7J(2+X&G?! zF^Mb!87xZ6fOn6{BM4;6@+V2nALk6X@t7JGfp9@-8SvaOy8Dnw^f*A!3PmLBY1~)@ z!X~9|SU&uNgM#@0mQN*%K!~KY40z#~Ryjx{+4NA^YRuqq z6UL53AVgAX1{`lp2#Y|7q|^*J)tEGbfRWpfGM^f5YbkS`MPQqt<|M?aHV_0>!cb}k z+*gdre&ho0kHDi1V#^17P>e5&K!~Ii4ZM@WBoYL4qe2Z7k+A&p00FL)5h5v7BSVKN zd?<25LP8`mMa8NI;G`k3zYgGp1@Vpt;G|u-_yiCNNW)^?1ag=(EItDSINPv@Lx8gl zi+o)GCk=DDOa5naK>^z^#W5>6#L5hEK#_*Ujy!;qhQ-Pa;H2Sy9eZ+!tOZ94cC}d9 zfnp&Xi+y_lCo*5WzXCW*5XCY2KB0cmJOq3zL&#lCWx9a^mQv9Q2RI5BD%TCbkpU{% z4Wz?DGvZIS8(!7`92v8~-5KUi7YqThTc|WR@BwmWAy%XSN9D%98!D^^Ikph%RlrAG zC(M*1C+BETfE-h~asW;^7N0BvoNz4O+kvVl9E*dA08Tg-YhiO!aG_(v;=@MxfN(6< z$^a)Ei;o)tPB<1TX@C=s#Q{eECk*q?T?x95>`M8UDTHvsvDhyOsm%yy!l)w*zX3R5 zK)i7TI3bh|JCgsM6nI<)(TmhN#`raWQ?r_EJT1f;AB-usVQLu@50iz+0FVQvWP52L z4o3nwX;^F!z_TudV{v#Az)8bm`vBmCV{w2Iz=2^1uoT-1P{1}!ag4#ZfKRPsBIBtn zOkg##4O7dQhagF33Na zEZ}BA&cw%<04K{&Y>NP#^pN-<6U<<;{KTdSzzGB5fMtMV4#z)_g8c0X@HP;*=mZcx zAe@OU7l0Ga#D|*zC(BQ~T?RN|SjxR&BW##(EH-T51H!TRfD=+z5{|`TPXH$ziw`^j zP8j}U_Q*pfvJwysI^LHT!dlA3{&T2^a7>w8;OoH;D3c4ebOcUuOtjp; ziL=OLC+-aXO&@{%PvXF#0kHuBI}*}>m}A&55V)9QFoy|TJgLFvBJh8fG1~uNX<&gk z<_q8`^ZECL{&pQG0|FOwOk&G1%1<-|B)A;l;vt4*gZ4kf`B5LR4O1Kwr9$QAf`r6` zV{s%HzzN49lM5IoJ0X&u>tFky1eyPN=SaXY*$Gkkx}aUsFlBO)uuH`OVvtIibTwsiK}ukPPmM8#d_X<_j4=)|*%1`yYHCq<|V@R_0SC7x*#=J~hT<1H)w;6HH!kO%QyssJ1Ybvki+m23G_5 zKs?6aQb0K6+Y6L^UM!6xTyUHI?HGbQ3lV**+0pX#Yc!Us6DEOk_Bf_6#aQ!9wLd zgKJc1uuzH50FIK8e-e#lfY|?#0~iY^lMAx_5;!%hiTzLILWA7yq+!a-1$!(~k63V7 zSX-j~5BboKHj{)c3{SP|vrg0#8> zPK`0KhN-k^U``N@DU*xbv4Q&kFwEQkkQ|pZKygg0RS2jR^#sW<4HbzwCiiCmE}qmR zi!|I)6&oOOl1CZ}#A6H=I}${BxyX$ffQ!~K7)pd=%H#q=o7D4%V{XF(H(n4fr%WzO zyu}0!P#hCa2jpB8_XP21K*TNu$8`@m*(f+6h_ko^_CLAi0w0LSnA~##IK?sXfKX}M z;1LNTCn%GPTy=qZ{uyGl|H)++D4;kdE)yx`<$?sYgfog`;z^NGCKuSdh|il`eWpaTzO5oI_W_5uz_jcW1Z3gBg`GDe> z)diH7i(F@chAEC&T_8SJgpCmCA>PUL*ZwCrS)d|{V^$YXCKn`%MM5c)i(F;_IK?rm z3q(#Xu>Z;B7WjbTnAHW8m&=mX1(cVI+;4$;sAbIR0`c8LI6#M7i77sSZXzNjV@c@pJkxGmQaFl>lW;}pnj$SCB zI3{Mb73Jk3_h$f~;+UA*{QHxCR};Bc1NZ`tiTw{ZXs}%~IRE@7(GuJ;$FZjp=m8vO zJC#8X+yOYoR0=(S<1(|N&K0FZNBm8y_s9N+jHu)TYK(~+-ik80KtU6HYK)0_P9@rd zd-7z+#7-`_S5NG7D%T#s2|?7sBDp>TE^ca86A{k8!6_I5BC7c(IfZbXD{?9$A4Hw7 z4O3%G%y23vAK;ToN|{_FeL93GQj?l^ShzHOLi=AzTrB+CodQaUNTw3^L5=}JC}nc7 zmvN}neSlAf>>rDZ*#Dq@a4ad43)ByRQ)5hAFZ`3D0z!#whirc0NljcY{L7<4d}9Ao z+5W(3MOFc2a!HAch06B__=Ew<R=Jn1F1-?j!FJ{ zs7NfTK?@LkF~=maJ>ZL%F=zpT&rWKA{ZCTf!w2Fq1}%UeP$n12g%5DCItDF3@WmXH zB>8~<&k&>i4{CsXKyl1!Im+Y$EkN)oj#=$TnOr2VJ~S*|##XQe1N+~KGPyw7V*`}Q z1zA-IoZ^_(mXyf_uO<`xe>g^lS#60Hm*YS2Kag6Ld_czd-)CHL81ZpnTU(Q1Qzy>S z8xMzvqyv1IFJ;PIn5#!6EtKGP$AhDi4pLb&lM(*mLBSF3;Xy(8E-b0AnaL0*9zbTr zKkvlaFowq@dPfMQONWrvd6p$@jXaTz;yU zw7B%%w<~KTO+OAEQmZm_cR=UUD@L3dcVW9q zxUcS)8A|r^71EE+3_6_|^?9A5!t2foa}U3J-ao!lI$KlWhpK|@qkD&EJlpc2vts^7 zRfYGphvtT~O3qhR=%U~^{@CMV*DCwSzjTY4)zSX-iJXMF^_4@D!K@zL_9LpsECP_a+UUR8O2z^(0S3ek!R zWqZF}N%-6%=$Ar-oq|{8;giQhPIv61I6^C>#3(2U;-W^& zD>Boy+BZ>bp;0?R;f|tS^F}d>ijB9gnxh`=J5nuXYW-bBxk8(l$6vn5UDWvE}aASXtqa(@rfpX6XC#pPTh;+&np1lB}oj zv76UV&4`Ro3hOrn9*o~*pl`L+<z%uc(r34c3BdtNmycCA zs6W?F(L%YCM{#qr9ww9Jn}U^EzgKLpYxXqn+b!phK}-FvyxjWX@Q;%puGcmCQCRhT z=)36ENu?^RN zFuNM7=H23!TI}}&YN^{)&Nh8m+Gu*UW^RkEjQPb&EiQlBHl^%-V~-}oFW$G2S13{GrERk~?ZP*w zhx2Doeq9^yrLo#(fwXnzeyg~rQ^pR9Dt+)+-twfE^3y5RixM`DZuxYU-m)jw31N~+ zhRVGSn)J@{Z)B^QrdZPG^_(t^TWqgsX*}&($v)lZ7dO3@ekzzQJ>scqxo&@1u2Z1( z^wL95@88vP?0a+ggX05&2A&yPpVJd}c~xBU z?%liLpL?t@le?T!RIu@I%pSH$FiVg;_}pqRO-ym+AGo zH@Wkhn#_8wm$5B9R7%vAjVV?AUfNvefci;)!|bJPOIxno*66mqNkri^4;6Kdb1nvP zj=5S<+e+>}2+r2q+QsL551;b}zZwl}+S9*xM2~vqah)w4Bu0zmM-M1HKJa|H|DL76 z9*rNCN*;#xjcA{HzjMn4YLce+{iL7sXCAodaZ6=^-nn&p4rUsTtu-7v4Ia@b%U^1= zsBNjDy8F3l9*z24v<~*`_VL8C9ZmU%+a9$9Wq2KCbdWhC+$^F;~Tiq)&cXgO; zcy#>_MXBrRCweU(m-vosu)i+fd8e#l<&eoaldm0ih?Je$ydbIHm3g^KD(0N1oRw!C zzbp5ZS^56qc~(sFu&dJ>9@PDA81y>qQ@dS5mZqO?D6Ad&Z`uD(6$I2+x>no)idoA!iJfY+~^YDf1To`m#$N+f4rzNoq9s< z<5%D3V`<_!^(c*&Ri8?SBs%u^r4}(NEym?*+_Kiy3et9+OmDxl`XR}^RILzOuB-K? zRr^Dq3lx90HoBl#eAbX zcAwZ2RxMS1ZhiC4t%1|^t6%TElC@#Pg)yI=Uy~cA`Hb}%VHXnR8tIq1`PtW< z@k%uZGCg`vYIDila+liEAzIT~Ot;Z%x;9sP5g$-ZfrgVJTQ17xn`#tt_9ow_rIQ*4 z+sye#vxnaI+%C7Pd|7_)qTWugvA=%*w7p!lBDB|%qeUe?jjC_I{%LDD<*57RF*+N6 z+O|L9k@d9a^o5sII3V@Qe)LXtre{j zb??2trT@Tvb;vu%SvPmQT)Qi(_t6jX`^f`U^hb^JE>vtGaXchHcE`lq`*5w@rpBwY z$~-ds^U`+vzd4{Z?9->8Uh+UAvyFaxzN#6hoY*_?Xj01dHWoRW=H+%~v%=8``Pa`pYU(f1WteYxo=Ap3h!Py-~5a zi_wayLyv0QUO%@ip!!@v+yU)`2g-8i{;U+A1!SMMfO?1~?w zb>vvLIa5{qpLh?cj=lX_Syh>-Xg^;u?ul;mYe}c=nim+!M`T?Nm@~$u@LqMS$NbFa z)9a2+A2mHw|FF zWZ#|?onEr0Km6{{wO_6`qBwvzG3U@rroj6 z8rrgBuC%8-eWc=!&L@;Chvu|*(wJUu6h3I@qz%2A+B#KjQ{LPy)HUbknvTB~%+DJ* zruR*?4>8jN7pC0VvB&O1%i78DJ8xF}JgxY9d$hfp^QGN=rm6ac8cu57e6`=%73q58 zLNh*o%qY02p4V&W$d`9NJc${6Y}w4KY99IfYwb5(wRE)VRnpl)zOqbDBYY#XZb4iR z5BHbM63?K>^Uu=tj%_iUw|BzX4m#0or@I~7Su(G7{_gnGFO3w_i&NTEEzu9^*~4|G z!Ks%!Ey`4iqsLV3-qU2bPrCZm6LD>>ln-8H`^<4f6V0~Q?7Qub>zT5l_vC}#t}4wm zPx)l%$kr6QF^NBJ%yi2(I=fRo|Hh-Bj=>Gz9)xV&fA7~3*A_aCZ?-;~H~GlS;m%JM z6>B!U4SleU>C`Vov6Lspgd> z>FW$KXN=wBuwldDLrXl{o!X?8akRy!?KhV8tDC*!#P&#sz#Y3zG_{LvC`e6x-u>eh zc|oFl`8chl$%VI8RHnUGF>d>I&#TX$weLTvR^0XB^v(&-UQJC|{rbqT^V@9qG%l18WdgrmDW^!M<$Oh?+)aMt^Pwz1L(&;AJ zHt8;xCwAxG`NvykTc33Ey>|Lrkn~nUq>FsgkCXH3PQ~cUZ4lbFNyN}FD+K`kGH#a#}IZrwHYq8^qfIf9&e)Ric{<-JL zP7nL-J>}ZZ`NPf39}9jAoHV#HyC!p#@##UQKebo*ozy|e;_6s)PX(u0O~z+upKzFc zplF5XMn~5bQ%4wXPJeA=lKWxln;w1l_-g(%w)^fZx&HX$!9w?IcTZg{?I@4B7vELo zesOcfM*S}Ƙ@w+~&^Y=|r=K%=etyYD`i`fmrj*?6vN_b-R)lRK+zbNnFN7dd}L zlSx<3n;K1bJr~^WnPuSZEB*%#yEajY?``|6o#(KhU7N>E%pA5x#jcrto}TLA%|Ye` z&!Vn&J-t%v#sZ`J%ToIvE9-t{=HS?W)lN;jldk`B^8tGH_O0hml%|Z> zJK8kx;-hr)A=l#8B_`<|IwCi6h*#5anlmCbF8Rdxy1ah-)5$0bfX@AF>NzQ{+bZ;D$4bL}BvAHnq!otg45BN38Qa!)CneCg^yWe)b-L&Qz z)3V!%f{_PDR~gFWy#_s>7!bBmbz{^ak89md#*h1Wvp%!`_b0E8*MIYVw<`Y7=eG~T zB)9V3B&?3e{5|^D^&hfd`|4`~oEKbLwcve??t;f-ey@Hpp5^B(M6ndf1uA=8VqBE$u$bRR`POJp5qV z*>-p2r)K%p94mEgt+J-gyb+IX!ET|Z&&TVku8q5uaVwhoU1FIsKt*XY4P zUvt&``}x%YnOa6WTm!1Jq=gelD%CXCoF8}ZsZo*4eA8&}RLgzCB1U(}{2luIv&o&i zi`Q0nxE<0j_f7D$PdRm8qsKeVD~grRb+3Kd+y6*?NS9M*8@B(tUSC2HEdD-Oe_B?~o0=~5Me~0oC(e62e^}ZoliQtMe|K%x$E|Lqfo{s0 zMjPa>U)VjYec4Lsgvs@yf=hE|JUXPKR-}-dR2QrIyl0AGM$t%(##j9kJD$ppb~>uG z$Vp?2?1thtz4$|IBx)@?yrg%kjdzcE_-NQ|*VktA zR;+$x=iPeXmu24G-Obgrv;#h#SiZyaNTtoQAd4FpLJr)0=Mdj!!29(^RvVhD=Qx_o zojUDy(VnD=rKueg`^g)+{A%&*Oy#esfxhR)tgU^#sekk-zkBWrUT>@$)du_UhBCTFKXWyR;cXV zHucug8(G2Ur9S=gybm60r8X~d=bc0Pxq7=@9I6JJZR+j!Ay;SPP515@yFSXt+H1Cp zKf5iy{n-9%jkDXBvbLEe>K3iD0;9{8e zGkfDEOPb|0+`jCT)6b#*@*d9~O!=B(Ay<|6YFiz;M19w$5qj=EI;rhi_IOrNu)=Sd zY(-*$QQ+~E5=|G2%}c6vBHIiq*Sykf{i5MRdwH+z&>_cjV7R;8fE#@@; zU3~XcM0w71P2CwM-+#M&P)TWiRA|AXm#%}C=yxlrYGb5#a+Hx=$=|JNU&8*#^oGR; z7k`Zoi7_2zTd^oot>%VnxA-^K-MT#1iRf`RKWO65%?jGN{WjiQKCSv-myCd~<0kzK zA8R$nv7nRQBa^15?N;urDQ)<6VUhgxpvOyQ8O;3L@2T_DAD8A^jXd!qt*-omT79GS zag$#6_-sG+U&Gq4V!amOZNF4U)lQBwN2Wa+nr{N zSC{UL2zLCP9yax9(bBeY!EOgEr+DWqcRC$kWq+nVGVS5Q=Yw_`9vhR_r|xoxUn^&J zte^96;a8u>zaE&^otUvC))-3>9jfZV%q75j&0jEUbWtF<1W1uT^Gk0f1I=F<*vQ$Os;v3+oO9@ zURmHXCFi$S@#sem=j4mL_Bi{jY?%AIH2HSf;M}=$qZdz@`m@KNZI2z|^t^^=Tz;3) zKJ%WU@x@LjlDj9_^)IAL6 zI%*%42W+hx_w44v&8ve}6fW$tt!2`x`)R51whl?7yY$JOHSOp;*W1Ah+~rRyzBsNu zdNowr{^r6#{bz=+f2VyTadbqRE4S<#ZYR51um1IXbYQ;usa=?<#%bF{nm?Of8?|Wp#~!wZ zi`9Nw86;m_qWdQ5+Q461RAzU(<+fyU>F~e@H78EYFsZ9j+5dZS==m>N-zRsy>$G9} zqU6)Hb2U^|*8~(kAK11>+R5deNA>VAX;&G#drs1R>#kZZ=Pn&6YObgnSu|>{u}b@^ z9;2r`I(Oett~&37ji>FsH^W9R(&!->x+Q3bb78kRwr#&G*lQiXWv82AtlNj{Zh9jd zE)1Dtk$Q5H_V1_;OEeb6tsZgU?v!N@yk1AZ}fXO&bMVb-p-b&{UU_#2Y^ zw(NPyDB;lx|u8rfQ387BIBzVxquAAql-K;w-Rh9RVKG_f{zdGN#MaqOZKVM~B(fM@c zf#t7K`}^VN%GO)oG%;~W{ zKG6@IoqYC7U!5M`Z{3>Qla+auHT4T_nflbZ-x^(4;WkF1rm*>dmc0Fx&6d6MLT_cg zx}#7vNny(7!@H-(e|)=Ufx^>Zg}ePE3xJ(X&gNR$W#Z{OM}igPT8}7*w88xZ6Zw`}6B*51v*O zE^HC=T0r2Uqqe zB(I%oaml~a!fxsTPv$KRZ0bL*Fn^5dwUn`nBiB4T7rnH4(VGk7hj=$Wo%rRT)Vs&C z=6W@Y^fq6g?WneK)|QGJu@5Fq&zHPWjB-u+{PmZXy#J5l*>T6;T-$20s$Tf{d1FT!#*eZagPFN_?cC&>N-eW77XljvaGmF*KP8(tl}%l9+{JFUeNF0={#zI zlg_BL*Y7T?-QC)J>#NH)$H$iJUhQmtdT-{|0lT)2N%_&dv5!lKPd0__mquCq?li!; zBwKgK($|gl<~>@S6E$S^tyA9Xyt@|8zUu6q)2Ur`Q^$ULN9487iM>=UALiFB|CZv@ zP?JYD%ocdLx;~t+ZSu4&!70(P3DfI}EPr&|QkMQ{`t02yxq6Rc=WdED+;`mZdsUw^ zp#f8uso(mIQ*pnD&+y*55OVpROf_v)l8*~)#Dr=%wZ^j0{a zk>hr|we0~*&mL8apHJKp8)j`?V$HXm?SH5HWG~Jl*ovX3Sp^bO5-lmP7 z7mS(`t8$>du}X(#e##p8gKZ>UehIQe_q00?=v1`e@Uyeu&DR%(dnhpWhh_7-u3Egu zw4HI>v(ToN=gNGOM>kci()Um(_EXG`Ir04Jq$zPhrOM`4V=o*~&WYRkeE0VQ%_q)n zKT&S5cy0IJrzh@H2zOXI&7=9sYW-a0=W)&39%#R@K>gG4%jezpXx(rtX(qAFTXOVy zd1JQ%Nv%%8#qQB-6bx&=ddsTr4fwJq+ijcW-{{F6?y7ZiZd;f#tuHouU<-VoUO#_b4(-9y;mVw?|eBB|#Irxb*P9 z>vAn7@nMrscUOnTJZw_(c3|>_;KiGL&$szq2XVOHj}`8n(7xl+!itUuR@66dx$aetxN-=NI|hyt9)$ij0+7eQo^KdUaI)#V+5jG*mU2Dp$Q4VAp7ita0zR zlS>P7;xx;eF1mMbP07NReX6S+3chAf9&p~0lVT61&LJ)egsIQHDwU1{FGtMlW zbac7W^@GhFiZ;xikzJOu{B45NaLmxr!zbi;Z!pg@H#t5uUivzGUG^od*;d2$>@jl~ zy3W}8O4L~Rx2}=(>l@uY)4m>Fd*ghOd`jiu^-sf06O6YN{kSpI`O(T2qaUxxuJqb7 z<4|`539Jyyob?Ahg8ShuTADdGa$XpNEH!b^W@r9O~jymp1o?cSCq-EAV z$2|w0J&Wt_?pYQ)phvoA=K)z4Bh=J%B0RUmyGx~S)@7d0>N%kLz(!_#R^JUn53BZc zS>MN3zD>3J(0Pgv`(&@{8=f}xOwfMi!yRY6Eg3qi{A%ts%c=8D>~k42{mt-`eFy38 za(`VoHaazl8801oeN4}+&)O@F22ZQ(GkY@Qv}NVs6%{{vzr4FUI&7NW4#TF^UCNHz zXZ6`r8aB<=WthRP^IGG_2d>bbK6A#*`wtFB9n&8+bo#P~kK`wJ>>YXAKivD$t~34W z?=1Ozw|ABE)E?er^^q4Tk2=Zwz4LtdpxpY*$fhrz z-5$R3`0E)vj(P6!N*{Db`YKC4`AvAaW6$=^Wm_tj6b#L})SG!e{kezdWc{NhsuQ;q zm(A;w)u6nkBxAH!x5L#xjX(U*zq$9YXK$5&j89gdsj82zNS?l-i8mQB;oqKA*%}*P;opdv-S!euk?5((|VY7zH z!&Bd9m2L}j4d1xcH|YKb?_2jhQtm2U*y$2q(+C80g1+qYptdXQvvw?M)HZC(<-OBZ zTVF4?&>B#3vckqKVOc?xd-=g3qaV+b?u}frqgB1Z#GcD0y}t5!?nBF+!9xc`M}&8Y zZ@D62wfnE;tJPa|D}Cwh)UHd0c8|^j%kM4UF{`y)w(D@~oza`G4UFil|Ju>1?7Q;% zp26R3WC@*L>g;P(KUlZ>xRQM?3EST(4wmh8Z7V%^ol~i}z)Wvfj5re_T=%haPLa zbapozH0acTT_)*`_nlAG@JtG9x+wVF@_~EIuImn1YjCt=-<2cZY-U9~y!mZ!X|t0X zC9e+zN6niMEQ$TtQss{8tL2aHPi^sGfqKm8$f)Rc4x?^(w7@Ac~Lmo+@uvro(+qiN4F0&c1wZ6j$qTTkWPe2e<$P|S>BfCfFRlhqqCS`oigZ1IfOt#k^Qr?^y>R@=s zET$p#tXGe=>t^rJ3U#o}9(;0hq|MEq3mm%beD?I&v7z#kMoOFJ_dmDkgsWeEQ`tz} zz=LWV<+Fz@j|_OxW9k;D65VTLpxv1pg z*I_RLt6l7q6Kd9&hj%cQS1pWFxTNHGHg)rx-Yx4hpTHqO$tJ}%-plr%Yiu~OV=KQo z9?3&eyD6+MUw=uZ%diy#>%!)I`c`K4Vm-6Bt!l5mdwX7sPx0RQV%=Al%k#df`N@`c z-a4U7b)eS>hmRA!E}OajQ-dw@Mp@}ol_vrNVX>F?s?DOhAHQJ&%5c^Dm5>-O~La8-yiO&acy|=`Kym^$o)rO>MM`WtaR#c z8f@zILCbr^xF@5YObc8TR`gBbaF|iTh2uD?K4a#*rP_SnAL`97olP33$i_z>f zIz9X9=+qj+;l}$lS2geTK101nvwORfy0ls$|D9oX;ls)C9@mc+|LhWJd_miON@Kq+ z6|Dy^**wKmMa5+9mZDutx=!EHy=k)f$nDGLUvAd@vewcIHnAG*f(%nmui4@!ZC$E6 zsf$lg?m%DjAIGvx=I)mLzVhnM@5ry?FIqgk`fl#SoRT>%;}?F)9m2eu8+fPBldJNM zCh_j-hoMX4o!>W^IKVk#aFf$<3NCu(=UVApRBm+6ev4*vuP$pp_vx+g@o;u(oe{HV zWXk@9eFx~8d@H|E6IhtydGErj-B*GQvo*4oY>ztLSMgSX!mJ-#`+kmma{c1*;+8(4 z)elzZmL<==v~7zmw7Wj;8MR7>R4Y&HKeayMbxr%}`~EMk&N3#CXlvUz6m4;r z;_j}+-QC^YeF_wcyL)lh;_mM5?hfU_;pLp~&&ikhF_~oco@DkUv)8)Ub+6sw9q}*n z9Ilz|*-yDP*xBuV9wu532OR>Tb})F4rGUOPp93r$RMw_cy2>eQq<)7iPwqQthd~(u zFsDwbK6hXoPvG1TofvG7I3T+OgWLW!YsurZD!Ts@JirKA-I-ge(tIydKH22wy-->@ z@ngl0X8xYpz&Im{ajFvS*pbmg=n%W}^UL*)gv2fR(a4qyBXTBNNz=ewUOem@u0t%Z*(+K6JOVp$R71x!0+1g{*f$pyG(07J70TW+jiC47iHZDg!jO? z2l*{WfrZ&VuyGV!O3hrR^g&2sQsBEu!%ebw)KT2mDs@ss?@8~M_d`_mbt544eJI(T zqRWRoZQ+f0$xGwm$m2&KgFT-IlrR%T`VN}P7pD+W_i0181?zv$y_Z!B=X6*V3tU%I zNgoxvzc=L1704@PzB14`{Z0#eT&QDxz-^0K0~x;7cXcSg?-K6m>?vRmCIS;@QGWf$ z3{j>#Jht!Xz+Hc&++37JRKnnwJ$C3Ex#>wW$1Fog_H^qXP;qA5+xYHrr3<2Q^|y%5 zMa^moR{nxk58tlT*UNa%)mtJ#4EY^dBp0Gr+2d~R4#X)GEfMrZobDbFV*LkcCO(>_3XKf=+r5sb zzEBDRl%tPr0ML_YidmsKLV zM+zpw*wiLvr4G5u{Esp>dFu5wk>% zgDY@9fwBd>$#Fh)dv-UYFYWkdMsVWEM7~5dMdfRT_A%ojMCJ=o9i02B`0y*D%hfyM zUqKPJ3()#hnK#@9ZgXp(VZU2EuZ=;Ts;|_X&NJrYD!cNQdp_JM66xp$1}K>+Z+6hKR#5BT8biyB#J~?Gw^rc8q>8{dir2{ z4|K-5)6}p9rtTQe%|H;dFA_%Im%fy;p-47_%)ZJ~T1YwR;QS>^T%OG3LtjcxU6_Pf^k!GaX>kMX`ozK7|uj;}N4-5@vPb5&Qd z%mGhZ6;HF<)ZVz7-jc1)WurzKUi{X|a*{4(D6xbdKqtW!P^%dr67c8!XSy=c6kSQ4 zj#Iw$;9itZRAQF+ssAmZSGA4YgHim{I@B+7h;gOH0A=Wf8Ob6`83hHo`%qajgfRLJ zZBh=r$G57~!<6Q~se{nn3SuscB*`E&m08z%3`&|btpVkNep#^io2{#8^l03eK(x0` zFjjUtK;F-CK;$LV<6{?tQ?N{)d;Z_6N{EY BlQW9v)aD#4m#UcW|_7WZ5Fdhby7 z35ecdi$&rqW&_(e1cdh#wLA9}B%`U28QUB#VyiBwCo(Ip54q-r-@ZHpR)D_f2K;(} zEf$8VEq#`8PrgiS_Po9hBfwieCpQ{i*$ssZh>YQL-yN&oY;88l)N9F;Lr>{g?X1Cy3 zJ^I=7ArxeTx~E8~QX+E$a+x47R_13>1r-jnIQ)gjni4K2RAj2?+1&YEKPEhMPx}D4 z)tQKvv>qMEpeUT`OzgH=bU3{v`W?UR07R;o5ZJpPjyxOfI>>kDnaWlSm1MCmDPIj6wYA@$K`9oS&)4w3yBjx5*Vj7DbY4R2 zbU5F^>!*Vm#{C>;y*#gnR5Z?gI`fn+Zjlho%*)Go9%S$#MxvpAbhW&x4Qx1~u}-ex~u9>SKd~35Y7--bM1ir+r_2TQB0kq!_|)aiOBlcKlb zcv0ujspHSCQ%@|`Qt=#M(LZzV#hqb)<@@}OG=VqUo)9s_j;P_TTld1frI0(J>sG7o z_Jy_T;8tbJ011u_GMPX?R=@e?8PdT`aOfq{=surP@A@C$fi-8l_X8|* z$PW&&StzWv5{xcy-yM!UJ*YX>deG(#1SAp+5$0TZ=V=$!lFiohmaL7Sl5T~jfGXLnZU-9 zDVaiL$W=^zSL@e?Z17SGU_@h!4DRxrQgL z_956|WInvsvC5-YY6EM@0s@=BIZU6DkrI=W_pq3laSO9Mo6e5|l7LPp*#y?*` z7O305wex7CZ`r-Px8n@%f0e-eE{}=;GN=WJxP3R=+5nK-mfV&?=Zarw z&S9$xo6F3vn5>COHg+q^`6KAxV8YsE>|f_9P)U&--``w}$yp=NRf^&LIOLIh8gK4T zqH^AmFMwi&yz;YB0u=s#*L@%Nig;nzA55E;Vz*SQ%tM|Nk0GC7ISH&_BknL$hUr8v@1-VyqZOc2Px`jw>=4c{5T$I29)+^>qnHflz3c^F>vi z2DwE)RyW;M6eAlAo-eTsvNmhOZ0))(0$_a;iU5vDrolV03|tC42b`_x+zH>h56S)d z6!}i)fBd7geM8Bq?b4}?3(YC zh{B7$S=KNHCYPx8NTX+GZZ)R0z3d>ZHC8;&ov=Fi`6iJcv~pzRAB5{Uh{|`~j?|i5 zRRDcEmLjmxmRtY!${)>L&QZSb8`rI*5%*k|Oc~W`R`y@iw%{AyXJnJ4U3f~vuG50d zuRF#`*KCHMXd~=B%P!2Tx%?@4=Q;u3=k{|4-hr}6 zjkSe#ab$Ad_djN(0z+aq6GYWPaJN^mUx1>6xus1#=993KrOmp>0D7CzP5$MZ>*bHu zn_JqubO)bH^YN8g^#-@&P^s;e{LBi6zK{@x)9Vuj6!YJwfC*U+Jq9)Pv9 zWsl?DiqB;j`!3Ypiq;rGFFP`){P!l=s^^T_BA;mP#JOvx!tI`zmC}^iF;Wi$dOYSb=Vt&ReV~n-z8-<+u zz_uLfo7L4IH7hb9rG(EE_^(RlPtV6n%LZO9gx2wWUHS|Dpi~JIx5T0H@0$*6mptq% z)T_x|tz(v^Hm!^wf9tTPNJ)Xb;tXQ2>Kb+?IOlu;8B0fRrfpZIiXejZ%h^;MHw1i?;h6{v zbUS}cy*GR0z(eRd>vt8){S_PC2lNmn|Ji2bB_gJ1+-iJcXfn(3{)>$q528LuadP6X zeM7glNRKBt^SclfUrhPNe>}Rrvp~Sn)v4nR zsoP{C3|L2rw;8m)6c!sGvPQJNOPjkAk>LypD(3%TtN%x7O#wfIMoSTzg~j~OT}{;>SX^)vCgM-* zoZ+(>`hVSWm{N`(V70)Rnxr3LeZV0;dt}9>LQw*r##{d@!s^A3MF$b1hdl5>kGao) zSv!O=TUp8Jj+5{G1E<3$i2wFwHrPQhZcc^;LAI0h_s0h}lU5du4TM>azal%-DsDM{ zWZwjBuEudB`S(AoC62|9YJPig2@9p!gJ6DUYXSS*h35!7tT2Kz13yqSG*JQ24!frb zZ)@|gx0I%z%O#d~O@Om9x~hmws;|wu&m5##t(}@xP0ueYx43(op@;pS6mih4NHTdXLbww7{hUJ_0nlK6)e?yUV*A%s?9r(^82|@{P0HAftOiVxdl=gE70 z`>@LE4V+=PO!B`Am!kUuYfZ!X{~W&mf6e^A^y>etBYv!pI|N% z>;JCMd54#;%2FEBE8o$2xnIjFomY~n)~2aWO?l+-IKA2?Tvz3f|0XoC4j}2xTH(=kxm1}ZoATVf zynA(RJ-m3EZ5#lZE>qkOUfFl&8Zb~`1hQbkor@Tov%Kz$l`!2BV7U$(^lzjrVv9;( zuV`R=&GtjhCRVfQDd1e+e$H1CtvHS?Kjf#XquZ?k~G;WeIXSGOxL zBg8uK3eC+#1-(IPyhpvWf`Pz=1_nPbPZ{hHz!t%U7J)&XL5H{9lhJAjGHx*R@+QRU zGc0wp7I4!hNXLPue_K4gQ%)6EZ zg#YU>zz3JhgVb#Y0R|6GYzUT_0SON$RFV3HBo&Mh4sJWx9!y)ZQYZin+A8AWmpj)7 z(YBYs5GdAmrQTG8sCxwE1N>+C4kRMWYz18Z6~Hz`0&c!-2mv-L1O|`mD1yW$#Om5j zgB`fGjm!nj*e%FacXU`F;GBz$*^R0Rtyl9jxY}aids%O9zp*}$WAMai=y^x++nxh2 zdS+V8lgueP7Q7AZ2+FmF+)4fqVj1euI+C5IWYFLK7DQ}%x&RVQgrFLvXCwR&L+r+0 zWxz@hk+$%*RkwE1lVFE(DY$CLDkg$kS7cV{Fd$af}E}P#cd|9~+ zu@^s@_8>n9KM2=*V7npwX5WjV%E4LBp;Aq3Kp}p%3m-zTA1F47fS6nwD7+d7WO z$Yf=gA^g{7&7LZE2-ggJC=cCu*Ier_TdqEYlRX!+D?!sQOBp+?Oo&arbJz6E2*73V zk`a>p_h13+-@Hcf48p0rV;uxK5M6^Wpk<4Ir<1Txu7_7K5;|H#R8NNiZzY6R^ z-mepFGjJgeZIfUJDjf$jirz>3asonpN(uBoQ}ScVD{)UgW>d4@Zef(h1>hfg{A$pX zd%+O5vm8;g!|WonehxAJ1m_}rA=NbEBqEmi!TNyr{>>Sxu@_Yn;m0Ee+YJoZHJJeI zwmThJaH5@iYxw5aNVB+oDsQh}+6!SCv!$4@@qT7=Dlr;Iz;LjB78X5taDrrI)LYa4}f%scrngZm4cOE;oi>q0ULV#W* zu6AP6;Umo?e~;UulXdIq9Qc?}D7taT>GFFAUbM)Nsi-+4a(=m7bRitB0(j$1249lb zVqOn#w)j5qTA%hvi4v9s2a5#<=VN>XHeZrtPio8ht^jjOAyU^|Kx%$|E*j+wSp0;! z1us1P0#Fmc{tzS>f+hSM*Xu7xVUzkXgig^B3boly_Ei&FTmRLn!w(*5mxsp!%m45( z?XmuPiozfBEp7Z}?plG;ANP&A_=DQt@MguQi~Y5-V=J%20i~NX`?iJ#(i!Ebxt=kbLHN;22ivlz&f9M84yz zUx2RfP7qe;!`}}!?k7Hd-^-w*VF>=yKj?1p-zy=(-L{1YfXG~AuIYSYZ6@EmtN!6H z&&MJwAc?>g(C+Vn-y`$u11W^k(g<}=`+^0mP+hS+7E6Mjhdl@=$~Qg#;&UGjm8}(h z74uO}iLM2<0mCauBEjx60}&*|d~w&qYL}%O z)KonhGhJ$s1juX+g|VuB%dce9-xA1r+ur4V8G)oa_c&+VREW6h?RZgKFP?`Q>Rkct z7`FJ?)U0O*Hb$G~REk{Y6R_}DTp?Jj`Sh)T?p#s;#rHgZUaG86cNJ|%IgjB^9!=w` z6Xcb)AaZw=(%K-2)t;o;Xlm8=Ol^xL6~34eOP|_x2Khf1Vm9`U@M?LynRX5c#jAq) z0!^8rV`JrkyUrf=*KbVz%}^;&a~JeIvHX0&rN*2L$mVMqK?fkkn)Oa9O?yGKev}|0 z*b!0SYl1XA0nEGyT;Vfv;B>%G_qNUItA(ot7w-;@tumrTqB)=>XKw86x#KzJ-W9tB z<60H)8XAPTGQDlX>EQk%z0Q;;JU7_0}F?3wJX@!R(Gk6?T9?d=gxrMi+Vc=8cm zk2?%AOtW$b2qaVCK)SPEt}tBio0!Z-QEec7jv>Uy!-IA2Yqmff`bofNvS%xF9l665 z=`*-2XVPIZJ3Nd1IaNBdmFB++oS@p;+MC)((Lvh|8?b&M4GW2v@Wz9kMKhU{Pq@e) znI0Y{9T$t?>l@O&TLb%oS`x+q`M_pgZ{T{Stw%ELoK;gAQlNgZT6rRTOXLyN4=T9k zK)+~9cZ0++_h8}R^VNl`Q1gc^#c3?Jf4q4;8Ec{he#)#v6Z8ZA60UC++Tl0JyA8=y zT&KBJHQnDFx%1}a7>3Z@8LwQq^MD7AmR9^3oD<(t*GV%OtW^q)lsPTUZAU0uybOG$ za~G(*9s)c{NI$t?XixP@YgcyUGI)gT3h9kwYgH^vA+{xUXG|A7MIMrtfb@DObZrjX z#8${R$eHWgNgT z_>$1a=_J*~6%Ac#LBPm}h*A(``jK_`;l+DlWeqVCHoYS|bROZNjm%nulXewKn9?SF zGk!vj5c-SmXJJH* z%`SQnrGyhyIyXZ2I-Ce+gMg4Z6ZUB-Vgp+t=l4ytx|mk_S#x6G30DTTJT0}l#oZ@o zOiOdRF3*K!v?T*pH{ef+XMrG3EywBcR=?s7YF?{g5szMicu@Z88bIFQCR*C&WjOrp zpgy0)eJP4lw8hqatbkbW_#Intyg**O#WrY0>B3pnM@tY~BbV`}$t0hir*=_E^DC0q zZi&NHWVl?kkm|X@HkD)JGM*#!^Gn_`=RDaT##6T_(TS?yrR$L*3~cQg>W%njdTaYg z;jPwwJtc?Su&8r5SpdX7P~83OOn=3P(%B+oF@|5t_>_y-ny$H5FgQsyfh_BeToJSS zq70iC-FY89scNBm9&QYzl)KbKd`p)JJ=BwStE()pA(qBnb-J-#DYH#|!?uovY}8Bc%@q4B?m2FNTs#3fpCGMdf%u z)il3CTgbdLAOJAqmeUE|q>lL!1!p!Xf2LG9r!;seFshO<5-MCY@W5VDdDnX1Hk)fvLEqv&^LaA!r5?Xsziq&4>85h-EHIBW0-5RFk)n1fxA z(cmFDYi%6zAU9^*-vv}o5@C4x$JRfooY*tPzR!uORrLfbHQ12QKGZt{?Ye`b2UWpJ zvc0{58$g0^_kCDpte0caAFIvFqoS1*rm2G9j1YKxT+F&UPlETjjKQRJwvZO9M>I~P zy>+&_#<6Cr_FlO@4tretqoSQ3_PEg>M}BDQY_^j4M2AH?QuesWj&qKTHaXZ1zVAMF z_}kR>xZ-FMptnJ!rLE3C7l@ol9u%WXz~S^$CQ@J%1gLcw8O_s@!T>l*Z29{#f|CrLeaG?r@3o2d)!Uw zb+qlGfF4&lh$58NBfl=me|HNXgCh4ICs7$8l@n zf#%d-cOADZ-nqv(#ram8NlxefWAh-RK>tn@AxTj9CmL6;6Fm9%ot$kr=q`^z#S3=q z+Eu)piNs{|{D^1EmMP&$0ZX5wjID0K=d)7HYj49NO)!R`u=@H+>g^!Z{P`=1^pl7_ zP9UNg-_J;}M?V1vYH!jw9FqnQip`AqJ$?xn#sRvAL%lqikvIJrAiVq83pMn`C=B?UfTlk4*7{v+3*{z; zvX;V{a{Ii(7r8%;#%WXtVK@BVP#q>vv59vB&wAb`?eLn6F7chPKt3X&RrdUh<{?e@Kt3U+ zu6k;>KpxGn>|4unm%F_l&WrHNBFF>SeAG$wu)FA=$kO5M5~PK3R3X*->f2P@xdVazJ7&> z7BVm->#k4O?Uvm3+*T#VjfI66WAC$`Iff%p%h%RpMRcE$|BMr>mrFZT@yE1n@$a7A zw1R`Vwd`l&(3~U0ZH9r1$@m8BLG;{jYx9dw1e|tjZZ_p|z`LcTYt!ID_r1aq-5Xx?4eBU&e6&ESi`#2f;M#_Y#b$ry3?B9I3l zRXg5#mt7+NoTtoI$CF{@;LHRi<+?@}sU*F1kf^Ego8Ot(-I6Nz`{Zi69Uc#ssb16} z%y*24#l^z-;)uQsYfM}H)1EaQ3h(kKMt>#$_wvi|>>@tokEpL?B~nwRwwDi07q%0H zFCZuAoeP=Ffl6ROo}p3M;$fa{OPGcR(~H&h5y~wY)_mzPC58LGmX9I73`ujdf1RlL z>UJz35QA^~H^%k--89ofOrCrxg4zKM`yZA@+Vu37p_If{#aY!nX~RO?#)R5DvOjQ5cTvmp4`*)yUxA$Z7Q@wQfmfmoFyi+(26DmpN1ODLLKN^H!d&{JiZ?H)bUZ!EBPURl zW)GE-m3d7!R{_w@17ttk2Xc=t_;$Q#b-~%opksl;z^y5+#2efM3(<3$JXEh2*F@}F z9+ZcUhG)f;p*c6pdmX>uymz5aw*Zv;QiVkA6XU-JcPZhC9gT-(_6 zlPv>jts54)4ZaCc42Q~s2{5NR6tR&&EYCW#Pdhgn`r;(oPhIi-eKy`Qwea^pGTj+DNro=%STy;L=sKPlOuY>g zX>dC-Qaz<~Uu96gnfF6-7@bJW_Iodh`cktNZY3Uql%$w(bzv-8=C)b6==aAVYvp|p z!F@yi4Xob$d-LR3^cU=-jq(dYKX*4~Hni?d^_l=GF+etl864`I4@d5$yG(t`5@qpX<@; z8MGG?n;N@ImL>AaKiH-1nDm$uMW*Wp>R2xl4s<RmO4cXS;2oDQ`M2kdLqE|{jam&DM zRiu{)_Z02>{qXnQmwh9DeSduzTZ{=KR&dtziC~<*TvS!jh4hHZmW~!OPR6MuzM_=2 z!AH~UsmB%Etmw$e>cyEfE}}>va#Dtl4UM3cB_cL41qW|hBRxR;$)Y)_Ap;%~J&wb~gw4icyQNM!<>HggZDEti$IZVyF$3X+wW~je z1ytFQZ#x|cg3BuEokuT}L@%47Y76}jEFW~01F%{kVj?h7*RTacp`afCHU)ezfl`dW z?SMXC2;~jp=r=cr9|4iEUxdFfr(u{#lP`=w;hP}ljM!}P!Aqp!6Wx0SrztypzAlYR zw&RlW_QV_Vpt)P9PV3XQz2n}2A^R(tCwS17goO)M(hAXdg#+W8>xkb^NBp1Vdu=3m z$YJH5HI&1W4Uj`B55@5S0X3}3u>2Sa!b+MeRTyHaWBpG(h+FE^tgOz3s%zTen%%%a zD)d;Jb!(O%28)u5qL>q--Z?Y4`O5i9yygiei?96_zWPNQgKja+HMm*S_nQUskE3{x zw@~8y+(`3SDPo!HR^0lIuQCP#)7kYUU5(#S>0%YA2X=}%ko?>LpT1EMg`8B!*ei!C z;JNe7gHThqsf>p`zp8w(W`EmI&dIdSW&$hbDx;ZoSe-_8T<=i((Y_=&rr&L?97Q$3 zZGlStclk)AnMX<-z1gzzqKf!n$4iH(`rrIx!*3gD9#k>5P9{xwOE^wK5d_-ng*JF&n;^oxO_m$hx z@|C&Uh=JuezpXSlTU%A}*{;e$vD8=p?ch^qb5yV6dwIAsVCV7I$5Cg>4-x}`gUFsk zwNgLzv#vtL!)rEdf0W^)D68$aTii%?Z&@dA1}$d=`h8}d{Q?C=8Yh@zkS~~OZZLAK zuVkZ)yQcU9K%-Qux?Q90o|*Z{ZFZPzZpT8}%l4eHyGLoTR_w6hs*afss}kpsrTN8g z@~{F7^r4cO9{E$-^;9!bIsBY$QR|=whyLgxwnx~1L!Hs@KF62k9z=yv_4G@Yq+rmF zs=BNNhFnD=&LL*4%d2+e;3~hvOvANBs94b&wb!)(`Inl$KdAI@$q~sYbo0j4$_^cQ z!XbvJ64gHAJCZnflLPCzBsSyJXoHVl74S~U@Y(0(G(SC)pXb;|~*c~{(5naN_ zcUhQ4B#q5}*?fCw_g}kCX<|RsS2}`$5$UlTL%2#l1$i9e0UnzCbj9}^MgYXX19$8KiUrm(s=5( zn{Z|om~y6(nUZ!SZOWa%EXgmCU~R;g1kHa$ zh%qwC)OhA_ewS2?7u_l;pcE6w!Aolid%Q`1$3431r(qNhn;2pg9J_B(yjXVWYm&RD zLOJ*Gldzl$Flt*{%F_>d1Qn0%o72!bXO6pZPCWaGtvm!G`>En~W|S0Q{QzYng%n=O1U19a;| zTogs@$vx1V%XjUeSJM2cvd%~OGNtUMAi`7JX$p z$qk@&24H@LL?98dO^1YF{Ha8A*@uarLj5&ZdwNlN?SR)F@Um!Va;wSX*!574 z@jXbcwfIe&`7Y`AHdvSq$lGCCB3IoNlP^@DRO=d8ITo@ofnO6Tp;dFc$oV(8|)gd z&tYB{R#Xr>Q8Y$0mUuS!`0f5zx-J^s7sCA;a;|B&k@L21NO$RIdqTs8+NJq-R5wZf z@?pELJ#P+|x}6SwR41;hli34J?uogD+;uHwS2y$x?>bY62JaWVmxmKQ(0C%;RojC? zCm|RI`@Jj6SNc(0L8O&HDL;YS%T~)=+j7e4-tb40nppN#@{ z+#GK@ci_BJBA}bg-MReO>_jRhG|4${9}JpoxXbVeRW8ukC1McW$`ZxyI*%cNoAEw9!XO^64fb^-|xRB`nn;u??t6MzHPDpY$x??Qhl`f zT1uy3%pD~8uuwg1zz3p2-dh|pwkg_k$Od~LBm(13HOgoPrbVe@>{Mlz$cl{3s}?w> zdvROF=~Aq?16sP`LC!;5y(4k|(&dWm=^HJTX!odL#jja6cu?ck4P{l#HW^LsNjNZe zcE!Lu{X?6`8KlFr=B4zGRgAw)%qVfYIhT#Bob+88o)0~aoI5mFsY4EZSv0-qdla|~ zyV!#Sys|oh4`#=;SRIWd8?%|a|!OheNOT3D+ltT+I3n*o! zx>0@Nw#*>xFlL1{JB)_I*aey(`{Dla@!h}e_J@L8Y0OQW^z@7k8uEAEW`kb& zlFB%Hb;{c3pTFW^H_q&S{VbRxK8cB3&E$(8eSEaQeQwXl;y=-s8BUHt=bL^|X_&ah zo{-9rUY1zx7T@djZ$X1j`hDHYh;sx3F||7aet~wszME`cf!Gc2m(jAGg9aY6g)*i1 zwie1oi)!Sl_vJ0EEYz{T>Xk;W96TOrYa}Bj#RI*k_=rW-vIaTwOT|XeV!u0<<)6<< z-JM5)X!kY|*(rE#e3}NHGGPp~H1I--0%fmMlPDpDTCu;s=+Wr{gEa%GX;nhoI0tql zcc79))GAI@qDmf(7k-^WE|6msE3+f$LG1WIqoK*lP9*=WgPUyQ=l_YrcI6+%6WpF==7sv#IDPx0jOyhbY`gp>|Sr~ALNO&i7!7u``e^_G6^{|DeMnR zZWnfA6jPh`Sw6x8V~ZMeaD>>Xu*I=_PZ<5I{7G?o2w3QD90!~P&pzU33gm2NNSc2P z5N#=8;a2En;Z6H_jL6MxlHIzcA5LRVq{=q)w4m(hKjJ9phS9qrU=j$e#nEiReao6-?HC-4kjkx z_sYbSX3!X3C`@Aul+uW7=6#09_+s+MAWZm^XFk@utusI+f|L;3!VQahN! zr;0)@NkqSB7l7-*6hmK;DNI#$3OVd$N8#jTzCjal#pNEUhh<-3V$s5Bv#jF)Yplqo zjs)W4BT6k(Oi7EjA@)*^S8hZuXpZ@77p0P0asEtiNv;eX#hT=0y?2<#@(%V@B7*E5 zV)Ir=Bs$fb#xpL_`kUxWp}{yPI(ti@$zeCjjI8yACoKJ~9|+1(<$Zxld1i;ZyUFJF z(M0<0*BLMUA%0steAm~G5f@LuIceX9kG9@aHiQ0*W?s}AlpvpBIn_9}H`2{a_4n)( zhOR!MVUHGu>kx zhx2TTo2iDJ3OMP8RBlT$hYv>2GPP!`MvA#cS5e&7`6e0waDUeidq_Wl?XG#7C%m-5BOJ(P3muiG6oz<_3)M%+l zWi!s<`Ymx~J^_PoScOh<-&uI>SP0=IP=9m06`!#EdDdUaVHhYW+{GqGl5X>sl6A7B? zdu=|x_x#RUnB9D7S;Fz?OQ;~_)Q@(6!85-?J*^MhXUi5X-EbS^yxxyoyPHb8HI%jV zxnc=)BCC(@+Q}P7f!5u+UXrZ^G+$!#28Ia+svGb1u}_wRynRX~=Zif?ePnr05!)}r zUdQ$8fSve&JG|?>9Y{zVj&pW=R>h#6ywA*Al4c3VFV))xQh2D~T&}`U8mC zzao_sc$7M|;VzXcA;FVMJ`0m|#v~L;Xao8A0w|;k?V#mUAWP-fL8NSk`A5G~B5;`# z*6o51q_6E$k6(_qJQEW={j68dk9 zkkVqgtRrlU*QUK>A>fG9Myo<+BHp&(E1RCP5zYVQO^O@kuA`tC90;$Ltk0j4Zb))t zHeh~sK8#4nXL{bwF!D=g z`;mZB>h)~&h2P5=iMcyiKnKe%B_dwuQ?*+I{#b31jlWFKlIV6#kH6t9>L{V^Pdqcc z#bygPky)8MaN%@J><%{G*Hvu+X!IWp!tyj=8FSDQ0Lm zG;glzRj*^dY++q@@ang9?Cj1dd@wIIma}JM+X1hO)3%W)^R~~u>AaVjSvPe0j5}oR zu$-T%5=i*%(B{T=L!X`i2<_~#ack{_4qhLYj78JS$;|Nrkr2I*KA6_jvqQ=0&RO|D zE7~~#Zp%)+{Lj$JnP~ApO?funiOIaoY)2OOk<`qEjGmjP4)cV(>XZ)gy(p%sEp~jV z0DjD-dw9+~X?S$zv5LIec&7Q(tXBh)@g~sbWqVMNRUUg=alzi?yW#0DYra~J#1>?i zfS=54wjKO?uJYMgmTuwZ^=^*B>qDwvHmm=Ka6 zPvMu@Pfi|C_>k@?>G@5%+DKqGEiA=>6b=s#T;2`Je{qyDq#iL9`}n2+!4OVrN^v0J7MykJvSjqbA%z_ z@1alV%DPlL(kZmkq2VO^1Kn(c?p@*BjAC;wB`GIo;KbWY2}d2ZFrI$5nS9C>+@zu4 z{DTU$X;1J7CqWpr)Ip=g*^2J6`{M=AP0M^nht<>Gq;Inc<=y9euHr6z7qmg}CyQVJ zfrG%3Mz71<%g@|$>LlQXF^VH?OVJ0wL}CkWqLXF3TEQs6Uzu)T!fSHFU(;m0XZJ9B z2&|Y-w+CwKN6n^-juM*?IY0#ZNf}FxwCDeVX=gJR#^BGirSZkH_`6!|XcIhSP%-22 zF(b%tJw;L4?)w#@;}Z5EymE%Mr5IOaqT?P$ev4AnbXN-9NRyV?9CBTM-%Ddcv{IE$fjLCF`%keECrTUCPHsWZRso9`jd$j>lnubOtn z&S2H+mb}NMD;8Dl9+(%T7H}~941%2sCyI&&y)cjpZ_x5cqN8mD=!2$WnW#pQ1gbjC zkH*@Dx;WHbNLu`<#_<&#cDewf_dz?ggEa#|QHPdi;SW;_d;6suBsT01a;Om)h5_=t zp3>=VWn;8u`N{zD-udTiW}%2Fd1oE7)|Z(3+cs&Rgw)1jly&D-kR}N37|mu z8e0v2#ww1Syal5jO8DBKN->Qn(KxMIc{Nep7f$@Dw41Ld zQMpHll?AC6SzijpC@fM!DB#e66cmnIo(_F`CTt|<4*emA=j|7V%{;|BK1w*}EPcwh zgK>J6&odTOVkui)l*6uGQJpp*?l>}Q7}B+95x&s_Th-aJ4T`rm$Yt*6teOoUGR~J$ zYxo3CdW!DbXe~+e$LYW>aRk8NJtfyQDQw~!#*VGI7e{sWMX42%kARUAc*3zqifqMg z=*=D#Bt{KMnUDwP;gR>z)|~?OeC5#+IHP08Q;Wo4XNJz7WF_Lhoi<}7&lz#EkJ2bVX%+3okFtXxp9qgtoIehuK*z+PA@ltJ!xG-O(`8oOc9b0ZbjS zt^F-XZqEU>5wItMdR4f39XJulhc6HxUkWDACH`gko)PQB zk`_4ePW8G^Q7HjokoG+RnU5<%K_YedqgJrm}1Lr7a zslZ8DzIHqub}~9IcO{IJZMw`8InOh`$nXtLDlZ1}Wee6n7eg6)hf{u%$bd{wpYrB*R4f4LFZ-BG4nUC7ZEpF2}lG;IcUq;ux{rkCK z<#Gq#L*?jBRauo$bTk!uY0?<&=&B7tG1028XBt7v>L5FN>2s!d&X4u>@w?|0O(oBk z@hwjM&4E9i%@$H?U|&70E?Jsl0Tg^in73VFYRBb$n+K#v%ZT!!h7~azPdWvWP5WAh zCV;5MrKV&mOx_|`!W{Yk*m@FhDx2?Zg(xLSJ4!|2?u$yLB4jPfQkJMF3WbncDy66h zHx(r*A)%0@LW)qK5WY$gZHQ=*`p&Bb@8SP{p5OOO^Uj<(bM|F!fK&d`70(*NCG$iq z_1)HJPe|SH!~eE=N(2A-hZ|ZK-fU>T{>J0N35SScNB3zf147P>ly;N2-TCILN8vu> zLpJNpTeus%+zTJM@_M4HX+Lr$#=F8#-?&V*eAzZOdIr6_q()~>^@UZkTyFeDweW(n zyEk|hNykl-m*l3|-1pb)C>*J@e^N~DuIA&p+-2`?i-`5SQS&gXr)?`3YhSlWdX(7p zIj^@3pRhb{rhd-;YjQr44mq!O2PBNYw94u5k4u*?-8VJ55To1l!l;+BLoK2^-rm{y zh|?IWZCH2avYXuPmSSzGbK`w`RD9WYv!pQGD-`Q{hvw%YrFdutEp-#rphH~!hj!GEDTy;l08ZoJDEeD|5EaKFZp-!!h*ZThWT*hu4-kHJbnTpGLaXyh}<3=c6S@ zpS)V+x|)6U>pScE=`|P6shHXESaXF+lqAv?aps-!3S23oIXCsDG%e3MSu4z8T&d{S zl)AfTsN(G&Q(b6Vh0jl?dA^!^?mES{xaHM@qF1J6#{;gv4Gmd;<%83f1>P6hQutZl z>|4*}MP!8UlX29qeg&npb;i-w#%Ijd)Kq>LIR!Fsv;0%9B=$B;TT#>Q`}Q#JOUl}- z8^wFNQgw@u7jCjI+i6_3cFdgclg1jugU;y0@I!+o_wv6Mr=E{%U&_c?GB>Gmk>se0 z%w)lr`EPGdRb8>nF5t}DSz&IauUMu+*>}>JdB-1jUzxy)yl!{=h@pg&#`qqI2O~rc zUG=37jJF7mtvcq^U|D|T_JxaAGAk=}c*jMLb~Uby3dlM7z}q=xP31X_2R{Vv+ecdu zuNG1oy?d;ELF=nx`}F5W1q}{tFkWKi?BmR;e(XN0<89>jKubeMgS6I6Lrd<~R0ch{ z;Ps7_8s{qG=Y|d289Ac#(OMaguE^1ks#OnNkU#HtOv}{0E23dVPO5xz)|zm;ZAFJ1 zm-1$=ueix@ZPVoi`MDTrt*gH#r0Bh*G;``&w&ID)LEa;h3T-2Iu{Ob*Cezlfz7kCf zPDyFCc&T`ycAV9c_eZaEd;3g#rt#gZdx`#h%}27uQc%CKw<%<2|&ukJZR`Dywz-=&!m_Y+{IEjDtv?rrj*hoIHDp zPG`YI=Y)zMA3D6BBeEh)q+O}wl%!h05BfywW}8S8=dpExcgOYI$W@=Wxu7s(Ql#wZ z*Dnr#RGY$^+o7gxq`qdC-?l3KbtAVXWR3HzPxI?uC*El~_ss(10NJI~m1-N;&F``g z89pZ9qTI)KpA*M9A3HG4=Oz3|Nwxl1yG{3Y>F3T(Ti4NkW31t8_l=``T^e7scPD-O z8c|dI>C21nRpoIyPWQ^&*4`}o`m5<~f-`5jY%;&?*tGCUK}yqg_uFC519gru){h^h z;9|aAxoE@nkw*kv0@dWhR?}Czh{fu~%A5@USZXIQ>*>ZPd`*g&s^Crj7K+$Z-k1BW zFLV1{ZTO+~)8A#w30|A?!t#4JuSyB$FBWjk5V1OQ;+!$1Xx-jKJyoeWFNYso zx3{@@kFJ`Mz&C}T?JebT*5SPZO3A`6hhKLz9;x$a$%LF`%mgc?fIsY9wd(v z+;muL{LMDs=9||Z&3mQfd8PXOmkRT(SG;&vzMSBXy*X-Y8s8^3qxj^p@bSBr9rn3w zqyN0xKS3!#HlrzhoBIZ}42hY!tLN-VeA1S6?|7wRTwI;>T<`7M8B_TYrk&C3$MFiG zZ(TwYSjFEhUPV|)-aW6|#X0TxY(uf{&taL5IlXLL_btJ#9!`1z592)_%`Zrp+@O>>TdqBrsIxw-Kn)A7NuX`G_CL(_OnZ8{iCI#DVOJU zkA9>;SJ)z)S<&&^gSv#HNnMrup&Zh0}SGmD1hMW-JuoUUqj*;cAkmtDA2XW@IB2+qaE zrM;)sp4DG(ZgR;wog3%Wy_)y6>{Lwrsk_6htR!+TFL^2vSg?P_>y|HV;*9?~d)IF& zY^=F`U$eIJGq3ja%^gNBGMh^_dw5j&?_Y3VKh3OOOHDG{Sah#_COY~IgeH~@h3cZC?6lL-+h25Ix$o8n#LEVl?%_~ z>AGxsozj?zA zx1_j#IitzwUdr?Ds=6r0n7Kabx{PaDxI)G{>nEl)E3aoCV?|u!ONKu_$(VbwXro1X z=Ef;SuT~wAx$k=a{9gKS-hX~I`|cZDTyfVS@spapxU^$~gKrp>xv+Gvz|V@Po!)+i ztJ162xgI;1;w_^ecB0hl$eD>vtJsdsJWRqx>nZSGn&)>H2h?EFylpfhs+9X2@sy&Kg35H zr4)CK+~xNE!tqlo?o|t<#BK|}oLf&zU1I#XUM0s$`?`$Bh=#DT;=8V1GnMzMEKW@d zH1jpPzv{F~P-eV%z&fYUbyD{4%e``{XD&ZX`rcL9oi5CYjqQE;F3e+M z-fZ7>Db<(6&Qv|7J~z)$I-_~sn9XxpSU%x((J8anlWMnQ2Hv~yIdG3{rrtyEd#jt( zJS?mwR^!{u+s!Mkw7ZcqN}*#^sJqU-N;iW45B{}I=Ue4v?Rws8D z6(62hcUbe&+`4qzyoT}(b8XUd;$~;q6-fIw1+2(W*t*!wX_tRs@v$6R+qc3tx?iqH zoRCO5ee%HJ#H%YuYWcUz4v))vlk#|B=f`6sqIvd(GwWRI&WF^xN8C8JVguts=L6dZ zZb8AOOXKE+D<J9ZVJt^Qh$_i_p7PX*B_k~`<6CKX33RV_E1pzYUh|Y zGjx-(?(Px^%!*0M9v7FkO^4^Iv-wV>jCIDXSC=lfyp1~{-P6+Y!TY^*wqC)sNO6s) z4Wh-m7lL?YYu|jZ9(i3sUiL%T{779_kEw3b5%j{Sw)0P&P9#etKIO{oOAeYFR_L%e z?AbZN-jV5x9&Cs)iq6h^x~pu|scPMk-iI@87O1;!dbso34aRb(O?5IKo>#{dJT1+n ziWfEtPRRM5zp*KAmvAGGDkds$eTnr*vG%jqw<#Scy8+5e_vx3GAk(9+wTpv-XPSf^ zo)jvO`8MLatYB$?z(JQ)x>nNJyYy&^E5w%Csu&0Ajh7agZr393bFR(U{kO{N!<~d8equj8_iNQzV^T&PKFMfAP&OxvMV0M6PUjRH;Me?8iUU zR@3Lq{C4Vx>|tIkZ()$1@Uh;RYV5+Ni!?KX^1bi_QVZr@yz0Y7hhZL;2f@^99UY}M`-daUHOl($*T;?BsXMVBOv z54dQBJw8_*)#Vc{TUQZQ5m}V6AzL<0^}mQ)OOI^eUMLZ)>#*Lb`px#CD1Uy?yRvVu zzx8xF`TOtDS|_yK+k|);UA#viZrT1GjD&Z7@wV8xayXO8e6^Q{horb#%k0%d zGtM{9i)b;`d(Km;xVV12{Z@ZrqkH#wKc`Aie*IS?rx~*K?#bnX<%K@&C0BVTdZ)_I z4Zi$pln2xH0Nvgy&|s_N$cb5#q~x4Dd{%432CGRpEl`?jsxP*WQC4xP@>%NCqM3W* zZ<{FZk`k#q=EDD&8d56~Khxpr9GO7L9NRM|bG{}%7@b}htu5@KpCozCavJT!)!2}7 z-WBsX`?drevwOTb|7PPfzPpuTOV_GzHMEotU2&V3>v5KP(`}#Z4Lx{Y+3m?`cjcF@ z_cza}ZJci7b)fqBjk#Cv*{QIuO@$v~>QFzY^|2^b+PN%sbIPrZ?w|%sL;r&nQ@kR# zJ%6^~(q;Wg;qSgjR&95m_1Z>CVB0Y3k+Wl0CWrHik2gN+h;TPN;v%AZc!g_ZaZs{R z;HnG8MYGMW^6#lpyyl$?4&*L)P+*%qb%gF+Ek*WzEx%5a(Ivu-&z|LOFaDs{@zd_) zuEzGKyf8(9+XpYds{i3@EL6Ab^{C#(3v_QvF4>}IP*i$nb@8GFCIL!HnmTz~ce2~6 z&uXu)DVg3bSCsSgObhe!NxP8?E^y-%CK|YP%wo-sk>VfI5Sz)%kyT~5;vpIL6X#c@Y`Jsm8I#jbdakc1(RZGokWG)5m+PSiN%!T5+=HhncR;)@;Obod5&iO;i8fyn`*b5Em;ArPH7Rq_&?IU;#y9+Ng zY!f`yJGR{;<=`Y?=HzjekB)m49~EC9)s}yB&#iM`FTBzj@%_+;Q|Z%+Yf5gdUK&kR z-WNbsK5swI)w%V7{=M^~A+6dpZoTR3C>`aQ;bjk%RV+@;P)dxCo0u&=F7u&IY13E5 z8Ta=#Nh_sV)4D_bU5;N~bXOWvydT1c1OZ}-OR{m)kGPOtml>um4b zxg#)4V3EVgb$zcf5HDZkEf5>WubVGcF%F(vAU&l4KT9y^hblPy_Y1`GgxCyz-ee(o zFM|p#kNv;(z1F0J_yLNWJ#+k4j0!D_d%RpsnYrxM;{$q~g0|{UOsSD>qkilv)R4L) z>dSl`{j5uEtie;ckIFsUuWre!Ts*1CHcH)4=%d|}z@=0(%kOjYtqh};Rxr$R)TUmz zCrMWxq4#Wju+Jyg_?+V>eQU;c^BQD0F4{Nd9riR@DEr;L1fKB%Nf6jzx()VmQov71%DUGo!M4w^q@*l-$79Ot&qYa~@f) zJ1zX$EsOKQCB62}u3pc~Q_k~v?s3sw#C6E<=PeT33XfxOiEAJ|j=`Xi?}kCmda_7t ziv+*C`S*J#BE&Vy@?BPl<;buZeLqP*@G%Vr|5%skxW3;U5oI&r7e?ew`Tj;?)A=C= zVyB2Z-8NrnHh;@yvC&!fhGH89RoINar&Y*+z;DzKdT)izU}kk1iEW!8%x16%a#7(Q za}vuN2jgfadmuT%?4!zOy$R7aPlGpApM|6=;07`2YbNez+h%f1Hps@qWy3 z{x&1AiTsbp#YFjLv0{uxY-S%)NuV+NP&sHj0&k?B`rxt{eZTar(Y9!EG@4?Jyao|mKh{IZBhwk-;BMw`H%ea z1?=)yTnO9st#scEbr<>ly31d&b)UAb(o*V~nX@%BY(-7fhtdxcQ#WMJJia>0Hur6$ z{IO!gkG!PX)fr!IY(4X0!Iv11N7-L8AM6%5dqDiG{D05KCHULkm)b7yRZif%Xy)gm zriL1VyMKuaOr2UoeJIs(zg9rTNcdP|V0liKgTKl_f$t)_!?JT0(nok23*Rvlux)$p z*A`g4(5zK(_6ng?FG;B`sh=?yHw#im3S<-%Ea|PixLlMcP$j(RZF}UWXcyiiKdIf8 zlDl7@(i#3;ROP^Gp<_LQFDoK{M#p`wlN8*oF1Y(e?QO@Ro^KsGf-U3EbB`QxxYwMi zB_$xM|D!xDw*1Sv+dZ}z4dnlC@n z>>IX8ZkWKl)bumnqivazcScJVY>?aYahv-5sImvWN`}7-9r3%EVTk&Ko{Na=J~83z&Z*kl@>Wcpd3JB-&JzLJawP?f@FjDl=*E%~ovA{yLW?GC z+1Eu8S^rq-b?O*x+d0W$bz|C>NCYogxFs-zBH&eI8g)}r%FI|W!dP@%YRjaIb{@N{ zJ?pK-s0rMx%>1+Udqo$v|1z5By8oBY?U{0WOs*tJs8e?I_N+}sMKz-x8cn>4cFl2+usl2F++*>Q*h!XW zr+F^|I*GnCeEQ#w&eh|Mr3~Qoj~4gmS*Ru&QbI4ER7vq;qL3(s46JoCm}y4 znwxda!|Uh9LeG@OZWoT!mAnbw(mzKnJ+W_NLr$v1s5@B=6Ha6+6yMxC|EA!=Jwva`F*ThA6QgFUyi`1Wpr>K({Nb}=+fM03Hfg`~=Lj6lH`>OYyl1uDlv{x^=Ns15 z2v<^g!s0%M{5?`eYAP-E9{Y6LwC_dA>Erx6+D>>(_7^$Tz_H$4#ufU;<`}l_zT7xL zWrS#h?(*X-+K8<`za2ZV`=Xm_@?LRnxfwJ+uA`ujj{Bn_kr&FEZL} zrf;<==&XM1#dE35=t(j8Y*zAg+3HhQJZ+}j{@!jDU)!NvaVF+hxZL#0HL@1gEeDtV zeClwx_xo7&FG)s`ZofK$4p;gIJhb_#c+ZKqC)DO{a{WS^Ah#>)cJ@3FU7b)AVe9fi zuk_(sEeXb1ai7PN%T?oiG}m>TJbJ|6Rnz&-ooOi;JLxjzpgB+e*@SB`l@{xNFf1P_ z?$O^g%-r6#AzO;?woTl?IB2H)CXK_Z9x*0P&s`O{e&MTyhy237ZhAHS)AV7#>|PZF zNfk;t6&(1w&hD7+>-#5SCPYV_h|Q-LJ(4ed`D?j%c6oIuFSnyBs`^rS^{jQXuB=UL zUbnOS-dex%5~T||7iV3##C!XpG~1~&pk}-0%zVS79n@~2j`7mtXQ~|>-{K^rc#@yQ zDadZm-rSsUxJA2l%YyMy+O5gQj~c9Byl>vvW+CN{+0v$sOkjhm8dcN?o@8I^oooV|8Vma6-Eo$+&*j2}Ha+-*Pa$vMG9 z6ZIFOU3bn+^?p(?``x3;h2Hgdb?I62Q`q;uRz_Sbe!FsJYuX9^`rC)YoGvC8raMU( zy$wmznPTy9TSxryt*6f`&WbimE7DDxF3Y_{zbiRQXjc9#&okFO1E@CxG~^bq-8bw0 zQSa=w?T*<;kJ>d+8;=Y-5*oTb=ja&keY{=!cuU>ao^KrE>lVD=!L-Zs^)jZtokw%u zmpDHdejldcj-8783FiG8wz0%~=UC~CMUESdeXH)>SJS&wlB~pXTYhq*!%u~11z}irvSqiY%FNvz{S)=I{ir=fo+YGp$TM>`gPe z|C7Pf{%--=FZYWwLpf~eq=w9U&es*MeJPcw^$lN~sI%BHdzjTWdPLLrv4z$e z4Nc!2c6B~1e30#>9y>)-d*0}4XF|q#RBk%FjjEpIYH&Jdj(OqbwPTyB?j~|PGAXAMp>PCowjmad$r4%tk9|&MKx+jOwmN^37zh$X%p3^CN-Gfb-vEG z|LXR^GI+(^$Chhr)-PQmW#!VMAhtlP$Sp86_EBoxqDhj1OLFY)wjXR*zohD{}L-vN0*aFnQdk-7Rm!YM0-iXyUeLUkr2e@s$U4 ze7{WP3WYp0PrETk`9gH=-9&? zlfHbTY1#~@9}E4ac}B|J;Y?|$?#q%!Wll_Sqa1hS>sue)-)o|Qb7-V&xPlqlr1CbVN|k0=EHX|*4=<@okCsh(T6DbnKcj3k+H2Iox8 zi?@bf7Ss~h^Rt&4ADT3%e-d#-$z+US#o!*Vp!dP?G! z*k?bUJZ@K5Rn@~&udn$tXB-MXFz#zH@6n>W*C@VSo_f5PbM2{T_K4iux5mevHnTmg z__M>W?Vk3zcdq6)h8wcE6Ad~QXM`zs8*Q}VHjZ9@z;_vIL9l+uy?Yu~%RKJao?kwn z>VMtl{CveGaf#N#QCVqU0$03xv3_sD7U^+eM*q1Mw=bz2v!+em>+skq#giWv_}sTR zD8lp0Rn*l#9X086{?s74+g^{WzLwj1O006ijw^n2njmv-Qejc7zngt-(U%v~RrlXH z^nIa5eg664q60#?>2uXhVN$tJGS@aM1{9Sm&Qyun$VH(b%vX9uHr|#W%mm1 zFRh);d*FZeQvAuC;r&b?)GncmfedBJ3aAs-nscVm;0_#{KP19a3CCt}By*XN;XZ~&T|FZ0|I3+e}0XZ2xGZncjgTGDA(pYV+@S0uzwYo-? zUGw9--lmTy!^0(Z?w6M~IxJ=?rXxFPihH;Ix4Cz}4~uD9pY0cO`q0wz)>9)ZJWV%E zI4yG{tSf!{=8YYK_tl){j^$mm-|Q84+wah#*WtTGH7+Q6pWSTGp(t@@T8m+f((;oP zA-OB#z0XeH87g|PXqBRg(z$)@(uz*+R>UZ&SUh*53Q-h1oTB7k3s;KK40h}dq)-gp z8QsG}?%ZKS$1QU>35DS%J*kgXKE5#VH?};}<9lFMWv*%PUb7ifL%ofc#_|N0Dl%3m zn6xYnp*)%Gyk9$LYGg~pi}04kadjE6RNT)wH@N*URCX3mFe9UgCH zZU~9aGu$xozcH8dH<--cBFpqlRQe$p^6XssiIMxJ3u=uqUA4-o;NVD?OwVEIBi1dJ z8R4~WnXN_SM&-zn?`wA~-B=Yhi;)l;p`zClHZ@vJPpWXTqj&MDP0>10wFWh=@8}Ec zcsDkjtLv&sX{)@Q^lOdLdjp@b>(ib=`?&Gu*~5i0ZEIv1`?dBga<+0lRW9qW(dFs4 z@xx8?Y~@o`<(9k9^$c3Yhnx0ToH@E{^X;|%X+0Y^Y}oKK{c_^nRU?$MDh$LoydCo{ zU_AF1-q_-y5o? z{k+!h)2MKBqf~}pYgw5`L51nd^{3pPy_w8l-`v@1U_G-}da}^jUy(rp6a2@GX?;5F z$?++rnt_s&Ok%I8h=)(O?3TLunK$+9aASIO?=$XkW=hn*+wu?nB^Tx~zk#40%sm?t9?C#03H=bhyf|#FXz8g8VC3 zRnE*L(Z;*$yG`|3tfoz?ZhU=$@jDY;ak;y-H-;zEMMM24yf2z%6pg1*^n|b6;mU#K zPX3?s>&Jgypm{sX>nDF!RLhwok!Gbf)6Q4e+*EPY)$dkWtA8ah{_*e}HLV@pdNWd( zcXcx^o!p|5pRboeZFQbop1gZ>pjO^EC5hEv{i?#kp3Yf)&8pmaO_8eP-1D+(+jmMw zgiKLetz@<6>8w)o7M`)C!u&}wms3U^5W4yynJTl~PM*10a`*~btfiJ#Y@%NA45J+` z(WXbWg0eQ4xI~}5=#Y@IXT{^gb`;-rh69+)6@qgi`$MYikxf9XTUdZ$W%G z<(-7^#jFt~ZPBVSCf+%sUMclG$8KzUJ^fLa^;2r;S}!v%w)q70T1y_?$kpd3H_#$Z zE%&Eq_0K)SL*9nmNZTVTTuIYf8K+`qbt=!r`blp1ZC**h0|U|39?R9ESG&Fqn)HS} zEF{z*X_x5KbTip9v#<3MyAEyhxp{%Fy`-r&(_VkcWU=JZb@A1-wngG|_jpb3^b8Z; zw?+Mhm0{-Uw#ze@m|fp(YbVCbe*58(qFsh&3azf}Zm!~oWqZd@`?MifMgP<@Y(NbmG{bTPw%URAkRo_Bs6Y#`R0-ncEg?nJmp-b9lmv8v*&XB8~># zdM2z%qlV|_r7Fvu9651`TzhloJ-N<%o4 zPhC!2u}3{3f0fEGg)qY+1C^F5KpF#8e4YHR)tm`RyzJ ztFPbu`eO7x<;Rzbc^4VOk~^+;Mz0Wzvu$~!Uk5J+7-iJn>IzxE%PmK{O!ci~Alp-Y zmXgPr(%yGRx|Z!2=W6*e>FA@28=HNic?z3DUDm&d8ozRE?9cu4vc9(YxBh%NCEmd6 z>9aYk`NPEGo+W*j&z&fHr+9hwkypD49S*ph38_z-moR;ul8^G~jZ06Z8|pG*6d!3x zHCgB7sI0x)r1B(LKs5=T(zvp1*;&chVAbi4FCC(tniD+oxv%{mUD~c^)4SoooYw8K zN+P@@%{;&4WtSuE6edfauX)zKh4S+FE5B1REy~Zt#p-T6J1mM1)>HOWGc`Ze(Zd z@KH-mzo=?lJNRMti`9m6HP7qMRf<=7qBTn+S#yqw)u(kI7pqRFdNrz0bC~j`avke< zx7-+&kUb06?l&%kYSBau=V3J#^U}u4B*-^>NqQhXIVr4T?Smc4X(6$TG|N`jX(@P_X%Mq4KuYrOY;|GvtLd16|0b#~|0z#c=_1Zs|_ z<|jR$uig($vO&D%+BpT119 zwx)0U`Y>bC$FB>c=XhPo61x}K)zx|a_;kTVS(G*b(H9|dQ#PzR#Va@2J?YxKYdzP( zJvDrlDiWXGH?tKz$F{u~8^N?(6Bp_jQW3RcP1Q$u7fT+Be$PVQA^%5}>6Dm=6!8krbIL1ICF8!8d|axTWjZyhVr?@k=Y4&n$a9+?P5C@~ziyjm zP0yDLCok{`mp!VtF*H0!*@wC2tkCf3b0+)On`B-IUgLeU+U@b;O>u>5oX`9DJV~6a zVyYMGw5;k#w)eHwKIS5fgrM+mug}^sm%d&hSF>My=J+VN<=@`)tbZWJKwVJS52OjNPTM8&gS*-)_1*dVzhowdD$^V*u^tMZ%vg+n&169&aX7S zR~D2n`u_EMH=}mj^Urf`?O+}bd+z;0x+h@I#kQn(YA#cf&#-yDSHs$DgwJ|aCgqJR zULF!RT3OVxzRdNNr-a_yz?#Hz3x>v&r1G~cr`F2RBcHytkI5S1c$eotz1@$@ypj=};x)Wxr$M~m61M`|(j*h1{HhOT8hTk;(^qI$_|2H2 zu)RilW}N=a$YZ|xQjuW-M^AB9<-Ex*(iWYnlFwVa?E0ep<37#$q5kbf`^ujOEysUR zKRV^A-IS{xl>D3FyV!~H{ov&U2wX&<*WKPn>|eS%f9ni(i}6Ml``*^9ko|d z`Ed9C$SupCB=RmD>NXg;8Z!{@cz7A-LxEJs(&-7xs{F7_yJGRZaKUQ<2x4iQwbiZBhAm>9^zdu3%qp*y2zVmtvyxwC<_z)8N{WT6>+eD<|w%@g`cnezR$$r?Vy3 zz5!l-o4-m+B!Ln9;MY8@-6Gd1I^VB*acTJ<-%M?oZ5W%nMkHnVYu1cI$tqp}lzkV1 z6sEBR*B^`MsFtJc50+yLkKejG?d*?$n*Cw4e0S?&n+xWuQ5o-Jd!?7!@P7(dPeeulm!f3s+5WP>@8xO_%UY9k z^e9z|wl6egah&Cn`n^oKLWTMxz9zA%JHn+i>|*vLl%y`&x^3cTL*dQ&hP;(Ym9}mg zBMmR+z4TDq@w|C{qhDR|V|d7I&FT1u%O1Kl?`*a*++UeJTFf)dd}~zUd(}>#k_XSf zyh?hWl{?K_`O5aO$6D8|gP&N9kQr?}OD~zVId+d~oP3+3)eg?=Y|f0fZq2tn;`ZZZ z!z0qxwFTV%?4q_c>%U{PRKsSrZWK@cZtF(ZxmpkSLenlByU}DDp|)XFY-++Dza4zm z>xHdmDiXbE4~jNzy_@>JX=C^>%cm3eTN(P z)^f=yBc~59Q%g+UlUN|H8<^?;zTv6T;cUf~ocOff+ZmiUw@z@AZAV&aw~Gc}@9gSY zC}*KJ=gZ0`M;4fEfB8LY%EzRMPih@6e>6-Nefdi$e%D3UzI-uc%KCnGK}Ar9AL;~o z#6PT=W9N?#iXoL*v^qF36r^I(f|+4rR@kV`CdQQ<4#&;@7+T}yLm5d-@F`O zGymPC0@c^Nt?T00p1aGIv8?W$O7eKYIX6;%jYYt{7`JZ~H>y3CzFY;(l(n|`={ZGj z+U_;K8g1$>U74W!`h(^ETN%RXT4D-%vl9~&^#aX*&0AQQn6ldD^2NFy=@AO1CSjvY zd@D2+93P$kuvDYb#K`1gf{I>P2P5%N*!kDOP1!pPc^>uJ>o;0#ksUiZY|W|T9W~!i zJl7m^xazi5*0yQUH++t=9w%&!|3t zIjBB>$>Dn@i%z$iaU@~M~ucwI3rm~qs<+)j;Jh!*I zB zRj5=Zk*yyzk4B*o8R&sybP9(;gEaBLF)EG9ra@MF@EDE41!kh~VDvAj@G*@Gmp6DK zoxuf6k;XX0B@Y~fZ<$QEIV=MG1pfb`pGv3Gh@UGV{sxQzQ4JoWQvo?>9)pX}PiF$%qHpP(fmoda zn^Ea37N-xI{*75w2A4(SZ@Ma`2-Pq%s&R7KyW9j6?jg&tPDflzt-R z{bp|17;sFU$O6I`JO=aF6w(-#!QxWTCTtpuG!MSza>)Sl06;RIQyCmKl{Aq~rJ)6> zObQdRFOvd7j0`l5NmS|#!UB`VX2W&%;r|~&GU-$@k;29t3JDl06Z1ZN3B*9&gvn;0 zZ&^Sg|K{=fWGj43BLkfm&GCj1H48jVS!HN(K$#) zfG8pK$DoZ_R4$n<=~M=0RTiC#gcFNFN5TmxlS&+z!2dt=vsg?v84DmNiGsR;z`(|A zB%D|rE~0c6m&WZ!^&f08xC1f0nOK<0hD#<Fe%AdGR?=Gl4%zw+tV%*rcn3 zF|b<(Zvq^Pc!x=4GRg9h7$Zv`rVy3MkIfYu%j1BNG^^dMLyVET}dP6LaK z%no3=kfl6)3laxvBcLX40%kKF z1FM9X2j~AQ$>?BcAReO8Da3Cc5`X>kXk4=CLI)hs5Vk-U4?s1s24M_y2aXZ=he70F z!5AHxm^3<#Y!Aac29j=YV0=w<7R7+@@uvA_ThL}Oq!p)m%s zt!ND9AJdjM0IdubW*x>5SHj?8R5R%q)l3>$zrhs)3I_rR_=gb&;$s>Bi0%`t6tdg} z6CKG(pjCWLEDF*OU};d45xQ7Rq?u?e28+%=Q4A`W25kn2=-D)Ucrc&Pje*ib@UuZZ z4nzpxgU*7hC5_S8T*4~SAc(l15ujupkpP=bcA@Ar2v$(}jJp6oox;Mr0}=@>!=Yk^ z=K!CO;o=NIUEsAN_&I&V)hF)y;pYrNU7R7Pi#r5Aalu|70|Ry^LOPc*Afoce?1zX1 z*)ah}0L);tAe(G6!8|V62BXvA*2tO&+!7+Pq62Lyud4sbo-B*eXf{Y%4F z2ZQJ!bjEM4gY);JpUz~XlYm1)CPF%$gTw&@nEGQ0e?kd#P!i}M3?_Hr9t8gB01V=H zI*Wp70TjZ(kAHv5K~@9=5|9M~b_y~<=}amQ=}I~i{1-Bt0Cyr(GnvRJgdf&LY7vl% z)FSBoKWcG+x}$?CB1G!N2bvWGvaF0sW5Y2)yV)S2Ceby!ZW#GqF%V zEwK3I55>lc(3o@%-}Zr+(j18DlCc84MR-#{K7YjnknAAlhWKZ2Jkc^-Z4$cVH&A{_;AkKq69s-dZ{+?pOqXK7wJe^Cy%+IA_=I5e#0dNN$ zGe4J!d7sPbyR*S!k=vIl7F&!9lanshjj_yc+Ww^#%`BIXC4 zM$FHk^!3LL0uY>g#QY2h2$L@XydGpjF{nJScF7QeA|PK00|G$kB%lb$LV^K`0I?AS z8_4X&ph29J*ms~H9W{re!0 zTl;>|AFs*OBL0rlJ zNr`R-f;NaGm@G_A5FSR10cJnCRpy|Wg02ysIAvRI6;|F~j;}im&!wqAp_!A z=pT^FM?%wZY?av91rQ=41J9(;kX$4( zPh{?cB|gCt;~=s?1{WHR1&M!xBro}N@J}Z2Pdtc<;jh>z^~9vIh(2oK@1Hb*7%cKx zm>~4Y2Z!(h-UGxjabU&43qsi29gaKSzy3o zgoDFHoO_VSg3KwhvLMQftSm@oBhkhL1D#CH5Ocvm(+BxmO9;$E$`<=uOt20RNic@E za7G_32r~GKD+m>U@}G1jAvDN1CfE;+aR>P#eUO1ohUf!`fy@{X@bAms48|uD)Hrz) zNTJ~ihs*++2LX2S7$niqw?G#I_8|7BfaidNJ4_Hah$C1-ZNf&b1B=f2!{P(D1ae*o zXf_W=Ls{USBNVb}NJugva)lQJ*Nuz?s8tzo;=ThzO7wR$3(nuq$DozbJ+VQ8kr#y2 z2-<{08zkEMXaW3iv>s=$&tv|3BFfi5&;p0#Apn3xI};oYbnjgL;%ay_8s{#UklRF{ zb0K(2J|ct*5a?W#ECp5{;-Vor-$!)=aSJ(PbXiasg5(UC4oI+rpg_q4NK+yy&!PZ% z4mb!w+aP5)3QQS&*J569mu~N*qA$8)VA>X!?MG#28tMupm1@ zz7j~1BPjx&Jdz?T$h48Q42!5Q>DzZeY=8v;cd{e^GZIM=B2`VMCJ-1X8q9*c5;_Q- z6wU+ugJc1tjEn^WvE(r>c(dd&@O0275EVe^2UmbhtSlf*9y$rw*mx59E7U=t zz!T&HP~ZtH802+<8IRmTFs)EN26DZ~SAYT{CWki&8UO}%Mkishkr@DWR>%whzCl4N z_!LE5S?qqdjQ7_CBq|^fy4a`&jSi2&V9X3*{X%9Q`2djWBNHo+4hKP+0*c6xrhrOD zq$xm_ARE zNVBuS)1gI+?Ifhu%_84#)nGa$#{ z{3OuK_iYSCZsGLF=&~WT?UCKqp~AN*&Du7YL0(5j1&h2tMUdd7$LU6QSY{ zFNkYq!K6U}9u5R!$&?J8ALyFES^RDL3{(O@$%s**E)*#NFbXlyQ0oF*hpF)FJt8j+UDqy=K zt-@hoTLt(YDHRZif0W7qB>-70q*Wl~hO`QYiM0yYVaQ#C2oWY=vQh#3LtGDQ6{z1t zN}U7lIvM?hAR)_L4y&()X)vmxVh*7nZjMK0JBW862Z#fYCL_azRfQzJ{Dhz2caN1DN9(uV@k_=SvU*h^F zXt+?jO2!t{dV!Yh(?9(Z3Chfn2!;q0^4g$84RHi`kjP)*f)h^0AlL)_>88J~Ar~qt z5egx9Po@RP7$LTUJ`&_mL8%=w4xyF@8HYTGcOx?ff`a&T5T!vUfrt^AW`N#MECRYF zkaq`FPDB`~5C8r51a$-G#0=0dWa5G-0lH6!OOdG`E))5^Tq39VZ@oWdgHU!%rc7wN z!9~VgNF9-|0NEB?V*$-@$SHs*0dkPJ$`I!z@h2>Z^Uz#2U*RKUX~2(1hXl6{A&97J z{ddUUE*u25kZr<+h93MaHY*|G-6x2N>-u|JP!Yo=!wzW{CN49z=e6QG>_TlfPY z`)}34zdc|*cm%nBy*_e*K~MtygM^}kG3XBa-(GNU@W1kQ_CdEDhGjJz}OSw4o z2{N3l`H4cPL7`6q|1gMRpD>1EpD+fo&%q~#F%=VZN zW1oL?4~#)=Dj68)nIl~Z%tO6@Fb1*3zHj@>XygePtWMFJCmjZ2*Xcj&Oe-eER%8EP&g=+{w;M0+4mY6kA z9`|u645E4?7=siz+6030Xbgp=;9Jxb%Yf=}vY`NDP{V*u0x2G}2^f;-nxLEmVGAn) z*aYMa8EB};?ZegpE`^K?oS8h41q6l0P`@gCiz0h4hH8spY;bMyZ!QICk2gWZ#gGm| z#lEG1O1Y}uLL}u ze{2t~BZ82F{A{394u{6y_o=UMjqEpoMn*OWd;y6Q5(w}T09gsaJQSuQ3N*-eE6jry zXjpF$^HPbI4M>}Sk41L%VL{Z{#ek-0a?lFKP!|`B(FaoKZ{{UB63BQX0^wwd2fhAe z-3|*f$u_Eo z@!R1Z$h^=*PWGtaE3s`7?Nk5R{e-j0y8Og!`d{eUH0wI&ZMq3|+LZShk z4yv8VKvO|5;dv|`IvsE+*((Oa0GmW05s`|3ycXGsB?`-tIR$-Sf4=Px)4@arrZTAO zCu?JLhRbZ3DIWPw4EAqEc zyhW@>2$p}w5_C(G^JZ`=+CT>!ro&Ybu@ST&Hk^r)1%ytp;|F|8><;{Sy zT_?0BlY^PC9xeiaK~PI*6BtBe@SX*E4APnigCGDA20;z{-eZ7bfo@UECXfKan+$Oh z2uR_1;8KtQge2IYd4PYQbFeefLPd2w2j{TY`da zaJ9263P&gH&XA;CEPuoG{Ipamhaj>b?0HUNVHjYMYiFM|5_ zfNF&S%t!1GHv=+~Oz_Zzjf^3p?VQX6U@VZ+2H?%3hpJ!KTw(#`8ehpo2hE39a`xs08QlM-4=k@I>?o9c+wUcIdK2A_H2S@p>c;K;R$zogp9u zb%ahrbUBc*1uf2a-Vgvni3*y>qCib0c|nLO;fX^42$mk6Hw1vtf{o|>1#p1i1YwUC zggQh7AT&Op1&I)xCj#j0X7h! z;TeZkA>2UDsS|c25`G|p@YTVyQy2@VRSb~zCnv(6Eg>!m4JXJpA>buzbiy1PAk%-N z4$6fPN}$FKkKyPwSaN-#pFu=Gm|5s!Q1fUE+yr!IL?VWK7oZl=w-7=cFvdSJLVOYr z-gQ8qlIt&kPJlPa^PsDdTr&sn+2I5Z1B_V=GV}MhfP{aH03F~M7)X)gk5OM2Y>Z>3 z@aPBfY#E#d$qBjiSmVQ5G17G)F9R#EhfMENfjp32x zLG$4LVZk9FgqF8K6Z_^30U&g|p?MJCLK{PYAD%~NA=4Uq8i!bL2mqmi0xviOfSe%! z1Woq`K%IURLWKfa5KPJwYWP=W^A=V=U2*ErkjT~aZe-QqoTnMM&1;GkI8-uHWFastC zo(BMuYVII@M1~Lm1XlqsI0S$Ye@F8m-a{UP*06u^yT3Jepc~NRkT3=fL1eUoKaWlV z0VG7T&}@dkMd|=ZynK2Q5q18%z!=JOwyWFE@-04lV&rz!U#U^hIRm}sK`ZvuEZVVvy2dJTb2Tz2oI9d?Z z(ZIJ*t52Q>b`M$)?f}o@4FMta2;hlB00_@S;dw&<2(p|!589G{0|@8;$9)iIL<JVgNz(4zb=~015mvpwJmFNaV9gXa(Jg7la%po;L)5kUGQj*pPlkn+%4q z4?rj|Li51*CQ~|528hO>P>pO7vcMDgz1{$;iKzY{vkBDyk(*$_jKx}sc%lYv42fZ~ zcwiAFGy@L|_=g2iRUo`8hgzCIY@%XiFcVQN9gN|$3JXkGvTkO9{f9DLQ1y%AXkd#X z>j9o1Lsl^ObN{67---}OgpwO1;UJ(>eq*6uIf7CkR|UdEY_@$dxqmU`|5u+pmSVkxY2QeE=TtlQ~p<)P`gwP?tqLY;)RIMSS3^dAL zboI*$c$Xh3J?NK1Sb(B;#CD)-{}TE?