diff --git a/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.Rmd b/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.Rmd index 29cfed73..506141df 100644 --- a/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.Rmd +++ b/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.Rmd @@ -347,19 +347,29 @@ library(janitor) ## janitor `clean_names` -The `clean_names` function can intuit what fixes you might need. Here it make sure year names aren't just a number, so that the colnames don't need ticks or quotes to be used. +The `clean_names` function can intuit what fixes you might need. The yearly_co2_emissions dataset contains estimated CO2 emissions for 265 countries between the years 1751 and 2014. ```{r} #library(dasehr) -yearly_co2 <- dasehr::yearly_co2_emissions +#yearly_co2 <- dasehr::yearly_co2_emissions # or this: yearly_co2 <- read_csv("https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv") +``` + +## yearly_co2 column names + +```{r} head(yearly_co2, n = 2) -clean_names(yearly_co2) +``` + +## janitor `clean_names` can intuit fixes +The `clean_names` function can intuit what fixes you might need. Here it make sure year names aren't just a number, so that the colnames don't need ticks or quotes to be used. +```{r} +clean_names(yearly_co2) ``` ## more of clean_names diff --git a/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.html b/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.html index 1d2e8c3b..78a645eb 100644 --- a/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.html +++ b/modules/Subsetting_Data_in_R/Subsetting_Data_in_R.html @@ -122,6 +122,7 @@ @media screen { pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; } } +<<<<<<< Updated upstream code span.al { color: #ff0000; font-weight: bold; } /* Alert */ code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */ code span.at { color: #7d9029; } /* Attribute */ @@ -155,6 +156,1117 @@ +======= + } + return output; + } + + function isFunction( obj ){ + return Object.prototype.toString.call( obj ) == "[object Function]"; + } +} + + + + + + +>>>>>>> Stashed changes @@ -299,18 +1411,32 @@
slice_sample(er, n = 2)
# A tibble: 2 × 6 +<<<<<<< Updated upstream county rate lower95cl upper95cl visits year <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Las Animas NA NA NA NA 2017 2 Jackson 0 0 0 0 2011+======= + county rate lower95cl upper95cl visits year + <chr> <dbl> <dbl> <dbl> <dbl> <dbl> +1 Gilpin NA NA NA NA 2020 +2 Sedgwick NA NA NA NA 2018 +>>>>>>> Stashed changes
slice_sample(er, n = 2)
# A tibble: 2 × 6 +<<<<<<< Updated upstream county rate lower95cl upper95cl visits year <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Routt 0 0 0 0 2017 2 Moffat NA NA NA NA 2012+======= + county rate lower95cl upper95cl visits year + <chr> <dbl> <dbl> <dbl> <dbl> <dbl> +1 Delta NA NA NA NA 2017 +2 Chaffee 0 0 0 0 2016 +>>>>>>> Stashed changes
clean_names
The clean_names
function can intuit what fixes you might need. Here it make sure year names aren’t just a number, so that the colnames don’t need ticks or quotes to be used.
The clean_names
function can intuit what fixes you might need.
The yearly_co2_emissions dataset contains estimated CO2 emissions for 265 countries between the years 1751 and 2014.
The yearly_co2_emissions dataset contains estimated CO2 emissions for 265 countries between the years 1751 and 2014.
#library(dasehr) +<<<<<<< Updated upstream yearly_co2 <- dasehr::yearly_co2_emissions +======= +#yearly_co2 <- dasehr::yearly_co2_emissions +>>>>>>> Stashed changes # or this: yearly_co2 <- read_csv("https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv")@@ -616,6 +1748,30 @@ ℹ Use `spec()` to retrieve the full column specification for this data. ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message. +<<<<<<< Updated upstream +======= +
head(yearly_co2, n = 2)+ +
# A tibble: 2 × 265 + country `1751` `1752` `1753` `1754` `1755` `1756` `1757` `1758` `1759` `1760` + <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +1 Afghani… NA NA NA NA NA NA NA NA NA NA +2 Albania NA NA NA NA NA NA NA NA NA NA +# ℹ 254 more variables: `1761` <dbl>, `1762` <dbl>, `1763` <dbl>, `1764` <dbl>, +# `1765` <dbl>, `1766` <dbl>, `1767` <dbl>, `1768` <dbl>, `1769` <dbl>, +# `1770` <dbl>, `1771` <dbl>, `1772` <dbl>, `1773` <dbl>, `1774` <dbl>, +# `1775` <dbl>, `1776` <dbl>, `1777` <dbl>, `1778` <dbl>, `1779` <dbl>, +# `1780` <dbl>, `1781` <dbl>, `1782` <dbl>, `1783` <dbl>, `1784` <dbl>, +# `1785` <dbl>, `1786` <dbl>, `1787` <dbl>, `1788` <dbl>, `1789` <dbl>, +# `1790` <dbl>, `1791` <dbl>, `1792` <dbl>, `1793` <dbl>, `1794` <dbl>, …+ +
clean_names
can intuit fixesThe clean_names
function can intuit what fixes you might need. Here it make sure year names aren’t just a number, so that the colnames don’t need ticks or quotes to be used.
head(yearly_co2, n = 2)
# A tibble: 2 × 265 @@ -995,7 +2151,11 @@ 2 Denver 2.95 1.75 4.46 19 2013 3 Larimer 5.49 3.16 8.45 17 2014+<<<<<<< Updated upstream
The %in%
operator can be used find values from a pre-made list (using c()
) for a single column at a time with different columns.
er_year_fix <- relocate(er_30, year, .before = rate) +======= +tb_carb <- relocate(er_30, year, .before = rate) +>>>>>>> Stashed changes head(er_year_fix, 1)