diff --git a/modules/Manipulating_Data_in_R/lab/Manipulating_Data_in_R_Lab_Key.Rmd b/modules/Manipulating_Data_in_R/lab/Manipulating_Data_in_R_Lab_Key.Rmd index 259f37a3..e81edc9e 100644 --- a/modules/Manipulating_Data_in_R/lab/Manipulating_Data_in_R_Lab_Key.Rmd +++ b/modules/Manipulating_Data_in_R/lab/Manipulating_Data_in_R_Lab_Key.Rmd @@ -9,27 +9,21 @@ editor_options: knitr::opts_chunk$set(echo = TRUE) ``` -Some data in this lab comes from the OCS "Exploring CO2 emissions across time" activity (https://www.opencasestudies.org/ocs-bp-co2-emissions/. This dataset is available in the `dasehr` package. +Some data in this lab comes from the OCS "Exploring CO2 emissions across time" activity (https://www.opencasestudies.org/ocs-bp-co2-emissions/. Additional data about climate change disasters can be found at "https://daseh.org/data/Yearly_CC_Disasters.csv". ```{r message=FALSE} library(tidyverse) -library(dasehr) ``` # Part 1 ### 1.1 -Open the `yearly_co2_emissions` dataset from the `dasehr` package and assign it to an object called `co2`. (You can also use `read_csv()` from the `readr` package and download the dataset directly from the daseh.org website: "https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv") - -- Remember to use `read_csv()` from the `readr` package. -- Do NOT use `read.csv()`. +Open the `yearly_co2_emissions` dataset. Use `read_csv()` from the `tidyverse` / `readr` package. You can download the data or use this URL directly: https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv ```{r 1.1response} -co2 <- yearly_co2_emissions - co2 <- read_csv("https://daseh.org/data/Yearly_CO2_Emissions_1000_tonnes.csv") ```