This demo uses towhee image embedding operator to extract image features by ResNet50, and uses Milvus to build a system that can perform reverse image search.
The system architecture is as below:
This demo uses the PASCAL VOC image set, which contains 17125 images with 20 categories: human; animals (birds, cats, cows, dogs, horses, sheep); transportation (planes, bikes, boats, buses, cars, motorcycles, trains); household (bottles, chairs, tables, pot plants, sofas, TVs).
Dataset size: ~ 2 GB.
Download location: https://drive.google.com/file/d/1n_370-5Stk4t0uDV1QqvYkcvyV8rbw0O/view?usp=sharing
Note: You can also use other images for testing. This system supports the following formats: .jpg and .png.
The reverse image search system requires Milvus, MySQL, WebServer and WebClient services. We can start these containers with one click through docker-compose.yaml.
- Modify docker-compose.yaml to map your data directory to the docker container of WebServer
$ git clone https://github.com/milvus-io/bootcamp.git
$ cd solutions/image/reverse_image_search/quick_deploy
$ vim docker-compose.yaml
Change line 73:
./data:/data
-->your_data_path:/data
- Create containers & start servers with docker-compose.yaml
$ docker-compose up -d
Then you will see the that all containers are created.
Creating network "quick_deploy_app_net" with driver "bridge"
Creating milvus-etcd ... done
Creating milvus-minio ... done
Creating img-search-mysql ... done
Creating img-search-webclient ... done
Creating milvus-standalone ... done
Creating img-search-webserver ... done
And show all containers with docker ps
, and you can use docker logs img-search-webserver
to get the logs of server container.
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
25b4c8e13590 milvusbootcamp/img-search-server:towhee "/bin/sh -c 'python3…" 59 seconds ago Up 49 seconds 0.0.0.0:5000->5000/tcp img-search-webserver
ae9a9a783952 milvusdb/milvus:v2.0.0-rc8-20211104-d1f4106 "/tini -- milvus run…" 59 seconds ago Up 58 seconds 0.0.0.0:19530->19530/tcp milvus-standalone
7e88bdf66d96 minio/minio:RELEASE.2020-12-03T00-03-10Z "/usr/bin/docker-ent…" About a minute ago Up 59 seconds (healthy) 9000/tcp milvus-minio
4a3ea5fff0f9 mysql:5.7 "docker-entrypoint.s…" About a minute ago Up 59 seconds 0.0.0.0:3306->3306/tcp, 33060/tcp img-search-mysql
f3c7440d5dc4 milvusbootcamp/img-search-client:1.0 "/bin/bash -c '/usr/…" About a minute ago Up 59 seconds (health: starting) 0.0.0.0:8001->80/tcp img-search-webclient
cc6b473d905d quay.io/coreos/etcd:v3.5.0 "etcd -advertise-cli…" About a minute ago Up 59 seconds 2379-2380/tcp milvus-etcd
We recommend using Docker Compose to deploy the reverse image search system. However, you also can run from source code, you need to manually start Milvus and Mysql. Next show you how to run the API server and Client.
First, you need to start Milvus & Mysql servers.
Refer Milvus Standalone for how to install Milvus. Please note the Milvus version should match pymilvus version in config.py.
There are several ways to start Mysql. One option is using docker to create a container:
$ docker run -p 3306:3306 -e MYSQL_ROOT_PASSWORD=123456 -d --name qa_mysql mysql:5.7
Then to start the system server, and it provides HTTP backend services.
- Install the Python packages
$ git clone https://github.com/milvus-io/bootcamp.git
$ cd solutions/reverse_image_search/quick_deploy/server
$ pip install -r requirements.txt
- Set configuration
$ vim src/config.py
Modify the parameters according to your own environment. Here listing some parameters that need to be set, for more information please refer to config.py.
Parameter | Description | Default setting |
---|---|---|
MILVUS_HOST | The IP address of Milvus, you can get it by ifconfig. | 127.0.0.1 |
MILVUS_PORT | Port of Milvus. | 19530 |
VECTOR_DIMENSION | Dimension of the vectors. | 1000 |
MYSQL_HOST | The IP address of Mysql. | 127.0.0.1 |
MYSQL_PORT | Port of Mysql. | 3306 |
DEFAULT_TABLE | The milvus and mysql default collection name. | milvus_img_search |
- Run the code
Then start the server with Fastapi.
$ python src/main.py
- API Docs
After starting the service, Please visit 127.0.0.1:5000/docs
in your browser to view all the APIs.
/data: get image by path
/progress: get load progress
/img/load: load images into milvus collection
/img/count: count rows in milvus collection
/img/drop: drop milvus collection & corresponding Mysql table
/img/search: search for most similar image emb in milvus collection and get image info by milvus id in Mysql
Next, start the frontend GUI.
- Set parameters
Modify the parameters according to your own environment.
Parameter | Description | example |
---|---|---|
API_HOST | The IP address of the backend server. | 127.0.0.1 |
API_PORT | The port of the backend server. | 5000 |
$ export API_HOST='127.0.0.1'
$ export API_PORT='5000'
- Run Docker
First, build a container by pulling docker image.
$ docker run -d \
-p 8001:80 \
-e "API_URL=http://${API_HOST}:${API_PORT}" \
milvusbootcamp/img-search-client:1.0
Navigate to 127.0.0.1:8001
in your browser to access the front-end interface.
Enter /data
in path/to/your/images
, then click +
to load the pictures. The following screenshot shows the loading process:
Notes:
After clicking the Load (+) button, the first time load will take longer time since it needs time to download and prepare models. Please do not click again.
You can check backend status for progress (check in terminal if using source code OR check docker logs of the server container if using docker)
The loading process may take several minutes. The following screenshot shows the interface with images loaded.
Select an image to search.
If you are interested in our code or would like to contribute code, feel free to learn more about our code structure.
server
├── Dockerfile
├── requirements.txt
└── src
├── __init__.py
├── config.py # Configuration file
├── encode.py # Convert an image to embedding using towhee pipeline (ResNet50)
├── encode_tf_resnet50.py # Old encoder file using ResNet50 by tensorflow
├── logs.py
├── main.py # Source code to start webserver
├── milvus_helpers.py # Connect to Milvus server and insert/drop/query vectors in Milvus.
├── mysql_helpers.py # Connect to MySQL server, and add/delete/query IDs and object information.
├── operations
│ ├── __init__.py
│ ├── count.py
│ ├── drop.py
│ ├── load.py
│ ├── search.py
│ └── upload.py
└── test_main.py # Pytest file for main.py