-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
72 lines (53 loc) · 3.84 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import torch
from data import Data
from embedding_google import Get_Embedding
from language_model import Language_Model
from train_network import Train_Network
from run_iterations import Run_Iterations
use_cuda = torch.cuda.is_available()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-n", "--num_iters", type=int, help="Number of iterations over the training set.", default=50)
parser.add_argument("-nl", "--num_layers", type=int, help="Number of layers in Language Model.", default=2)
parser.add_argument("-z", "--hidden_size", type=int, help="LSTM Hidden State Size", default=256)
parser.add_argument("-b", "--batch_size", type=int, help="Batch Size", default=32)
parser.add_argument("-lr", "--learning_rate", type=float, help="Learning rate of optimiser.", default=20)
parser.add_argument("-lrd", "--decay_rate", type=float, help="Rate of decaying lr.", default=0.80)
parser.add_argument("-da", "--decay_after", type=int, help="Number of epochs after which lr should start decaying.", default=10)
parser.add_argument("-l0", "--min_length", type=int, help="Minimum Sentence Length.", default=5)
parser.add_argument("-l1", "--max_length", type=int, help="Maximum Sentence Length.", default=35)
parser.add_argument("-f", "--fold_size", type=int, help="Size of chunks into which training data must be broken.", default=500000)
parser.add_argument("-ts", "--tracking_seed", type=str, help="Track change in outputs for a particular seed.", default=None)
parser.add_argument("-d", "--dataset", type=str, help="Data file path.", default='./Dataset/Pre_Train/Wikitext/train.txt')
parser.add_argument("-w", "--weights_file", type=str, help="Filename in which model weights would be saved.", default='pretrain_lm.pt')
parser.add_argument("-e", "--embedding_file", type=str, help="File containing word embeddings.", default='../Embeddings/GoogleNews/GoogleNews-vectors-negative300.bin.gz')
args = parser.parse_args()
print('Model Parameters:')
print('Hidden Size :', args.hidden_size)
print('Batch Size :', args.batch_size)
print('Number of Layers :', args.num_layers)
print('Max. input length :', args.max_length)
print('Learning rate :', args.learning_rate)
print('Number of epochs :', args.num_iters)
print('------------------------------------------------\n')
print('Reading input data.')
data = Data(args.dataset, min_length=args.min_length, max_length=args.max_length)
print("Number of training Samples :", len(data.x_train))
print("Number of validation Samples :", len(data.x_val))
print('Creating Word Embedding.')
''' Use pre-trained word embeddings '''
embedding = Get_Embedding(data.word2index, args.embedding_file)
language_model = Language_Model(args.hidden_size, data.vocab_size, embedding.embedding_matrix,
num_layers=args.num_layers, use_embedding=True, train_embedding=True)
del embedding
if use_cuda: language_model = language_model.cuda()
print("Training Network.")
train_network = Train_Network(language_model, data.index2word, max_length=args.max_length)
run_iterations = Run_Iterations(train_network, data.x_train, data.len_train, data.y_train, data.word2index, data.index2word,
args.batch_size, args.num_iters, args.learning_rate, args.decay_rate, args.decay_after,
tracking_seed=args.tracking_seed, val_in_seq=data.x_val, val_len=data.len_val,
val_out_seq=data.y_val, fold_size=args.fold_size)
run_iterations.train_iters()
run_iterations.evaluate_randomly()
torch.save(language_model.state_dict(), args.weights_file)