-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_iterations.py
199 lines (157 loc) · 8.12 KB
/
run_iterations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import time
import random
from os import system
from math import exp
import torch
import torch.nn as nn
from torch import optim
from helper import Helper
class Run_Iterations(object):
def __init__(self, model, train_in_seq, train_len, train_out_seq, word2index, index2word,
batch_size, num_iters, learning_rate, decay_rate, decay_after, tracking_seed=None,
val_in_seq=[], val_len=[], val_out_seq=[], fold_size=500000, print_every=1, plot_every=1):
self.use_cuda = torch.cuda.is_available()
self.model = model
self.batch_size = batch_size
self.num_iters = num_iters
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.decay_after = decay_after
self.criterion = nn.CrossEntropyLoss(ignore_index=0)
self.print_every = print_every
self.plot_every = plot_every
self.index2word = index2word
self.word2index = word2index
''' Lists that will contain data in the form of tensors. '''
# Training data.
self.train_in_seq = train_in_seq
self.train_len = train_len
self.train_out_seq = train_out_seq
self.train_samples = len(self.train_in_seq)
self.fold_size = self.train_samples
if fold_size: self.fold_size = fold_size + fold_size % self.batch_size
# Validation data.
self.val_in_seq = val_in_seq
self.val_len = val_len
self.val_out_seq = val_out_seq
self.val_samples = len(self.val_in_seq)
if tracking_seed:
indexed_seed = []
# Assuming tokens to be space separated, so no need for fancy tokenization.
for word in tracking_seed.lower().split():
if word in self.word2index: indexed_seed.append(self.word2index[word])
else: indexed_seed.append(self.word2index["<UNK>"])
self.tracking_seed = torch.LongTensor(indexed_seed).view(1, -1)
if self.use_cuda: self.tracking_seed = self.tracking_seed.cuda()
else:
self.tracking_seed = None
self.help_fn = Helper()
def train_iters(self):
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset every self.print_every
plot_loss_total = 0 # Reset every self.plot_every
best_val_loss = None
lm_trainable_parameters = list(filter(lambda p: p.requires_grad, self.model.lm.parameters()))
in_folds = []
out_folds = []
len_folds = []
for i in range(0, self.train_samples, self.fold_size):
in_folds.append(self.train_in_seq[i : i + self.fold_size])
out_folds.append(self.train_out_seq[i : i + self.fold_size])
len_folds.append(self.train_len[i : i + self.fold_size])
self.train_in_seq = in_folds
self.train_out_seq = out_folds
self.train_len = len_folds
del in_folds, out_folds, len_folds
# Initialize optimizer
lm_optimizer = optim.SGD(lm_trainable_parameters, lr=self.learning_rate)
lm_optimizer.zero_grad()
lm_hidden = self.model.lm.init_hidden(self.batch_size)
print('Beginning Model Training.')
print('Number of Folds :', len(self.train_in_seq))
for epoch in range(1, self.num_iters + 1):
fold_number = 1
for in_fold, out_fold, len_fold in zip(self.train_in_seq, self.train_out_seq, self.train_len):
# Convert fold contents to cuda
if self.use_cuda:
in_fold = self.help_fn.to_cuda(in_fold)
out_fold = self.help_fn.to_cuda(out_fold)
fold_size = len(in_fold)
fraction = fold_size // 10
print('Starting Fold :', fold_number)
for i in range(0, fold_size, self.batch_size):
input_variables = in_fold[i : i + self.batch_size] # Batch Size x Sequence Length
target_variables = out_fold[i : i + self.batch_size] # Batch Size x Sequence Length
input_lengths = len_fold[i : i + self.batch_size]
if len(input_variables) != self.batch_size:
continue
loss, lm_hidden = self.model.train(input_variables, input_lengths, target_variables,
lm_hidden, self.criterion, lm_optimizer)
print_loss_total += loss
plot_loss_total += loss
if i > 0 and (i - self.batch_size) // fraction < i // fraction:
now = time.time()
print('Completed %.2f Percent of Fold %d in %s' % ((i + self.batch_size) / fold_size * 100,
fold_number, self.help_fn.as_minutes(now - start)))
fold_number += 1
del in_fold, out_fold
val_loss = self.evaluate_all()
print('-' * 89)
print('| End of Epoch {:3d} | Time: {:5.2f}s | Validation loss {:5.2f} | Validation perplexity {:8.2f}'.format(epoch, self.help_fn.time_slice(start, epoch / self.num_iters), val_loss, exp(val_loss)))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
else:
# Anneal the learning rate if no improvement has been seen in the validation dataset.
self.learning_rate /= 4.0
lm_optimizer = optim.SGD(lm_trainable_parameters, lr=self.learning_rate)
if epoch % self.plot_every == 0:
plot_loss_avg = plot_loss_total / self.plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
self.help_fn.show_plot(plot_losses)
def evaluate_specific(self, in_seq, out_seq, seed_length):
input = [self.index2word[j] for j in in_seq[0]]
output = [self.index2word[j] for j in out_seq[0]]
print('>', input)
print('~', seed_length)
output_words = self.model.evaluate_and_decode(in_seq, seed_length)
try:
target_index = output_words[0].index("<EOS>") + 1
except ValueError:
target_index = len(output_words[0])
output_words = output_words[0][:target_index]
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('-----------------------------------------------------------------')
def evaluate_randomly(self, n=10):
if self.use_cuda:
self.val_in_seq = self.help_fn.to_cuda(self.val_in_seq)
self.val_out_seq = self.help_fn.to_cuda(self.val_out_seq)
for i in range(n):
ind = random.randrange(self.val_samples)
# for seed_length in range(1, len(self.val_in_seq[ind]) // 2, 3):
# Get output for given seed
seed_length = random.randrange(len(self.val_in_seq[ind]) // 2)
self.evaluate_specific(self.val_in_seq[ind].view(1, -1),
self.val_out_seq[ind].view(1, -1),
seed_length)
print('\n')
def evaluate_all(self):
total_loss = 0
lm_hidden = self.model.lm.init_hidden(self.batch_size)
if self.use_cuda:
val_in_seq = self.help_fn.to_cuda(self.val_in_seq)
val_out_seq = self.help_fn.to_cuda(self.val_out_seq)
for epoch in range(1, self.num_iters + 1):
for i in range(0, self.val_samples, self.batch_size):
input_variables = val_in_seq[i : i + self.batch_size] # Batch Size x Sequence Length
target_variables = val_out_seq[i : i + self.batch_size] # Batch Size x Sequence Length
input_lengths = self.val_len[i : i + self.batch_size]
if len(input_variables) != self.batch_size:
continue
loss, lm_hidden = self.model.evaluate(input_variables, input_lengths, target_variables, lm_hidden, self.criterion)
total_loss += loss
del val_in_seq, val_out_seq