-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathRUN.txt
58 lines (52 loc) · 1.75 KB
/
RUN.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/// Training Usage
--> Usage prescribed by original NSLT(Camgoz, CVPR2018 paper)
python -m nslt \
--src=sign \
--tgt=de \
--train_prefix=modeldata/phoenix2014T.train \
--dev_prefix=modeldata/phoenix2014T.dev \
--test_prefix=modeldata/phoenix2014T.test \
--out_dir=./nslt_model \
--vocab_prefix=modeldata/phoenix2014T.vocab \
--source_reverse=True \
--num_units=1000 \
--num_layers=4 \
--num_train_steps=150000 \
--steps_per_stats=100 \
--residual=True \
--attention=luong \
--base_gpu=0 \
--metrics=bleu \
--unit_type=gru
--> Experiments and Tests performed using following low resource usage command
python -m nslt \
--src=sign \
--tgt=de \
--train_prefix=modeldata/phoenix2014T.train \
--dev_prefix=modeldata/phoenix2014T.dev \
--test_prefix=modeldata/phoenix2014T.test \
--out_dir=./nslt_model \
--vocab_prefix=modeldata/phoenix2014T.vocab \
--source_reverse=True \
--num_units=32 \
--num_layers=2 \
--learning_rate=0.001 \
--src_max_len=100 \
--tgt_max_len=50 \
--src_max_len_infer=150 \
--num_train_steps=150 \
--steps_per_stats=2 \
--residual=True \
--attention=luong \
--base_gpu=0 \
--metrics=bleu \
--unit_type=gru
Inference Usage
python -m nslt \
--out_dir=./nslt_model \
--inference_input_file=modeldata/phoenix2014T.test.sign \
--inference_output_file=./phoenix2014T.test.inf_out.de \
--inference_ref_file=modeldata/phoenix2014T.test.de \
--base_gpu=0
View Logging in Tensorboard
tensorboard --port 22222 --logdir ./nslt_model