-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspatialfeatures2.py
153 lines (125 loc) · 5.73 KB
/
spatialfeatures2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Extending the existing spatialfeatures.py for handling
keras model graph related problems
"""
import numpy as np
import tensorflow as tf
import keras
from keras.models import Model
from keras.layers import Input
from keras.applications.densenet import DenseNet121 as D121
from keras.applications.densenet import preprocess_input as d_preprocess
from keras import backend as K
import tempfile
class VGG19:
"""
A class that builds a TF graph with a pre-trained VGG19 model (on imagenet)
Also takes care of preprocessing.
Input should be a regular RGB image (0-255)
"""
def __init__(self, input_shape, input_tensor=None):
self.input_shape = input_shape
self._build_graph(input_tensor)
def _build_graph(self, input_tensor):
with tf.Session() as sess:
with tf.variable_scope("VGG19"):
with tf.name_scope("inputs"):
if input_tensor is None:
input_tensor = tf.placeholder(
tf.float32, shape=self.input_shape, name="input_batch"
)
else:
assert self.input_shape == input_tensor.shape[1:]
self.input_tensor = input_tensor
with tf.name_scope("preprocessing"):
img_batch = tf.keras.applications.VGG19.preprocess_input(
self.input_tensor
)
with tf.variable_scope("model"):
self.vgg19 = tf.keras.applications.VGG19(
weights="imagenet",
include_top=False,
input_shape=self.input_shape,
input_tensor=img_batch,
pooling="max",
)
self.layeroutputs = {l.name: l.output for l in self.vgg19.layers}
feature_batch = tf.identity(
self.vgg19.layers[-1].output, name="feature_batch"
)
## This statement gives the model's output (features)
## use self.output for extracting features using the model
self.output = tf.expand_dims(feature_batch, 1, name="cnn_output")
self.vgg_weights = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope="VGG19/model"
)
with tempfile.NamedTemporaryFile() as f:
self.tf_checkpoint_path = tf.train.Saver(self.vgg_weights).save(
sess, f.name
)
self.model_weights_tensor = set(self.vgg_weights)
def load_weights(self):
sess = tf.get_default_session()
tf.train.Saver(self.vgg_weights).restore(sess, self.tf_checkpoint_path)
def __getitem__(self, key):
return self.layeroutputs[key]
class DenseNet121:
"""
A class that builds a TF graph with a pre-trained DenseNet121 model (on imagenet)
Also takes care of preprocessing.
Input should be a regular RGB image (0-255)
"""
def __init__(self, input_shape, input_tensor=None):
self.input_shape = input_shape
print("DenseNet121(Input) : ", self.input_shape)
self._build_graph(input_tensor)
def _build_graph(self, input_tensor):
with tf.Session() as sess:
with tf.variable_scope("DenseNet121"):
with tf.name_scope("inputs"):
if input_tensor is None:
input_tensor = tf.placeholder(
tf.float32, shape=self.input_shape, name="input_batch"
)
else:
assert self.input_shape == input_tensor.shape[1:]
self.input_tensor = input_tensor
with tf.name_scope("preprocessing"):
# img_batch = keras.applications.densenet.DenseNet121.preprocess_input(
# self.input_tensor)
self.input_tensor = Input(tensor=self.input_tensor)
img_batch = d_preprocess(self.input_tensor)
with tf.variable_scope("model"):
# self.densenet121 = keras.applications.densenet.DenseNet121(
# weights='imagenet',
# include_top=False,
# input_shape=self.input_shape,
# input_tensor=img_batch,
# pooling='max')
self.densenet121 = D121(
weights="imagenet",
include_top=False,
input_shape=self.input_shape,
input_tensor=img_batch,
pooling="max",
)
self.layeroutputs = {l.name: l.output for l in self.densenet121.layers}
feature_batch = tf.identity(
self.densenet121.layers[-1].output, name="feature_batch"
)
## This statement gives the model's output (features)
## use self.output for extracting features using the model
self.output = tf.expand_dims(feature_batch, 1, name="cnn_output")
self.vgg_weights = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope="DenseNet121/model"
)
with tempfile.NamedTemporaryFile() as f:
self.tf_checkpoint_path = tf.train.Saver(self.vgg_weights).save(
sess, f.name
)
self.model_weights_tensor = set(self.vgg_weights)
def load_weights(self):
sess = tf.get_default_session()
tf.train.Saver(self.vgg_weights).restore(sess, self.tf_checkpoint_path)
def __getitem__(self, key):
return self.layeroutputs[key]