-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.edp
470 lines (381 loc) · 15.6 KB
/
main.edp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/* Florian OMNES ([email protected]) */
/* Charles DAPOGNY ([email protected]) */
/* Pascal FREY ([email protected]) */
/* Yannick PRIVAT ([email protected] */
/* Copyright Sorbonne-Universités 2015-2018 */
/* PLEASE DO NOT REMOVE THIS BANNER */
include "getARGV.idp"
include "macros.edp"
include "curvature.edp"
int config = getARGV("--config", 1);
/* Characteristic length of the domain; used in the definition of the geometry */
real ll = 1.5;
mesh Th,Th2; // Th = actual mesh; Th2 = tentative mesh
/* Load initial mesh */
string meshname = "meshes/mesh"+config+".mesh";
cout << "Loading mesh " << meshname << "...";
Th = readmesh(meshname);
cout << "done." << endl;
cout.flush;
cout.precision(12);
//////////////////////////////////////////////////////////////////////////
/* Numerical parameters */
real nu = 1./200; //viscosity
real muer = 1;
//////////////////////////////////////////////////////////////////////////
//////////// Parameters from the command line //////////////////////////
//////////////////////////////////////////////////////////////////////////
real l0 = getARGV("--l0", 1e1); /* Value of the initial Lagrange multiplier coefficient in the def. of the augmented Lagrangian */
real binit = getARGV("--binit", 1e-2); // Initial value of the penalty coefficient b in the augmented Lagrangian
real btarget = getARGV("--btarget", 1e1); // Maximum value of the penalty coefficient b in the augmented Lagrangian
real errc = getARGV("--errc", 1e-2); // Stopping criterion of the main optimization loop: the L^2 norm of the shape gradient is < errc
real tau = getARGV("--tau", 1e-3); // Initial time step
real cv = getARGV("--cv", 1.0); /* Target volume (resp. perimeter) = cv * initial volume (resp. perimeter) */
real alpha = getARGV("--alpha", 1.05); // Multiplication factor for the increase in the penalty in the augmented Lagrangian
/* Balance parameter between the energy dissipation and the least-square error in the objective function
delta = 1 => energy dissipation ; delta = 0 => least-square error */
real delta = getARGV("--delta", 1.);
real kc = getARGV("--kc", 1.); /* Set to -1 to compute the curvature on an obstacle in \Omega, +1 otherwise (default value) */
int jjmax = getARGV("--jjmax", 1000); /* Maximum number of iterations for the outer main optimization loop */
int kkmax = getARGV("--kkmax", 3);
/* Weight for the volume and the perimeter in the constraint function;
beta = 1 => volume; beta = 0 => perimeter */
real beta = getARGV("--beta", 1.);
real rafftarget = getARGV("--rafftarget", 1e30); /* Par défaut, pas de raffinement variable */
real raffinit = getARGV("--raffinit",1./30);
int optraff = getARGV("--optraff", 1);
int navsto = getARGV("--navsto", 1); /* 1 = Navier-Stokes, 0 = Stokes. Default = 1 */
real gamma = getARGV("--gamma", 1.); // Parameter in the extension / regularization problem
real gamma1 = 1-gamma;
real minarea0 = getARGV("--minarea", 1e-4);
real minarea;
int every = getARGV("--saveevery", 3); // Save intermediate shape each "every" iteration
int save = getARGV("--save", 1); // save = 1 => save results
real epsilon = 1e-6; // Penalization parameter for the pressure in the Stokes equation
real epspen = 1e-6;
real arrns = 1e-6;
int ii, jj, kk;
int solvefluid = 1; // 1 if the fluid model need to be solved, 0 otherwise
int nflsolved = 0;
real J0, J1, L, L0 ,L1;
real tau1;
real kmax;
real raff = raffinit;
real l = l0; // Initial value of the Lagrange multiplier in the definition of the augmented Lagrangian
real b = binit; // Initial value of the penalty coefficient in the augmented Lagrangian
/* Connectivity data */
int[int,int] ordre(1,1);
int ct = 0;
/* Constraint data */
real vol0 = vol(Th); // Volume of the initial shape
real p0 = perim(Th); // Perimeter of the initial shape
real c0 = beta*vol0 + (1-beta)*p0; // Value of the constraint function for the initial shape
real voltarget = cv * vol0; // Target volume
real pertarget = cv * p0; // Target perimeter
real ctarget = beta*voltarget + (1-beta)*pertarget; // Target value of the constraint
/* Lamé coefficients for the linearized elasticity system involved in the velocity extension / regularization */
real muela = 0.5;
real laela = 1;
/* Other parameters */
real multint;
int adaptcount = 0; // Counter for the number of mesh adaptations loops inside a single line search
real sv; // Stores the actual L^2 norm of the shape gradient
//////////////////////////////////////////////////////////////////////////
////// Definition of the Finite Element spaces and FE functions ////////
//////////////////////////////////////////////////////////////////////////
fespace Qh(Th, P1);
fespace Vh(Th,P2);
Vh ux, uy, vx, vy, wx, wy, dux, duy, uxx, uyy, clx, cly;
Qh p,q, mx, dpx, dpy, dp, qq, phix, phiy, kappa, phi, psi;
//////////////////////////////////////////////////////////////////////////
///// Definition of the entrance flow, depending on the test case //////
//////////////////////////////////////////////////////////////////////////
if(config == 1) {
clx = (1-y)*(2./3-y);
cly = 0;
}
if(config == 2) {
clx = poiseuillex(ll-2./9, 2./3+2./9, ll-1./3, 1, x, y)
+poiseuillex(ll, 2./3, ll-1./9, 2./3+1./9, x, y)
+poiseuillex(ll-1./9, 1./3-1./9, ll, 1./3, x, y)
+poiseuillex(ll-1./3, 0, ll-2./9, 1./3-2./9, x, y);
cly = poiseuilley(ll-2./9, 2./3+2./9, ll-1./3, 1, x, y)
+poiseuilley(ll, 2./3, ll-1./9,2./3+1./9, x, y)
+poiseuilley(ll-1./9,1./3-1./9,ll, 1./3, x, y)
+poiseuilley(ll-1./3, 0, ll-2./9, 1./3-2./9, x, y);
}
if (config == 3) {
clx = y*(1-y);
cly = 0;
/* uxx = y*(1-y); */
/* uyy = 0; */
/* multint = int1d(Th,1)(clx)/int1d(Th,2)(uxx); */
/* uxx = uxx * multint; // Re-normalisation par le flux d'entrée */
}
if(config == 4) {
clx = 1;
cly = 0;
// Moindres carrés
/* uxx = clx; */
/* uxx = clx; */
uxx = -(2*y-1)*(2*y+1)*((2*y-.5)^2+(2*y+.5)^2);
multint = int1d(Th,1)(clx)/int1d(Th,2)(uxx);
uxx = uxx * multint; // Re-normalisation par le flux d'entrée
uyy = 0;
}
if(config == 5) {
real td = .5;
clx = td*-3*y*(1-3*y)*(y<.5) - (1-td)*(3*y-2)*(1-(3*y-2))*(y>.5);
cly = td*3*y*(1-3*y)*(y<.5) - (1-td)*(3*y-2)*(1-(3*y-2))*(y>.5);
uxx = (x-1./3)*(2./3-x);
multint = int1d(Th,1)(clx)/int1d(Th,2)(uxx);
uxx = uxx * multint; // Re-normalisation of inlet flux
uyy = 0;
}
if(config == 6) {
clx = y*(.3-y);
cly = 0;
}
if(config == 7) {
clx = -(y-1./2)*(y+1./2);
cly = 0;
}
//////////////////////////////////////////////////////////////////////////
///////////// Variational Problem for the Stokes equation //////////////
//////////////////////////////////////////////////////////////////////////
problem stokes([ux, uy, p], [vx, vy, q]) =
int2d(Th)(2*nu*tr(EPS(ux,uy))*EPS(vx,vy) - p * div(vx,vy))
+int2d(Th)(div(ux,uy)*q)
-int2d(Th)(p*q*epsilon)
+on(3,ux=0,uy=0)
+on(1,ux=clx, uy=cly);
//////////////////////////////////////////////////////////////////////////
////////////////// Macro for the Navier-Stokes equation ////////////////
//////////////////////////////////////////////////////////////////////////
macro ns () {
if (solvefluid) { /* Only solve when necessary
if ns has never been executed or
if the mesh has changed since the last resolution */
/* Initialize Newton loop with the solution of Stokes */
stokes;
if(navsto) {
int n;
real err=0;
cout << "Navier-Stokes";
/* Newton Loop */
for(n=0; n< 15; n++) {
solve Oseen([dux,duy,dp],[vx,vy,qq]) =
int2d(Th)(2*nu*tr(EPS(dux,duy))*EPS(vx,vy)
+ tr(UgradV(dux,duy, ux, uy))*[vx,vy]
+ tr(UgradV(ux,uy,dux,duy))*[vx,vy]
- div(dux,duy)*qq - div(vx,vy)*dp
- epsilon*dp*qq)
+int2d(Th)(2*nu*tr(EPS(ux,uy))*EPS(vx,vy)
+ tr(UgradV(ux,uy, ux, uy))*[vx,vy]
- div(ux,uy)*qq - div(vx,vy)*p
- epsilon*p*qq)
+on(1,3,dux=0,duy=0);
ux[] += dux[];
uy[] += duy[];
p[] += dp[];
err = sqrt(int2d(Th)(tr(GRAD(dux,duy))*GRAD(dux,duy) + tr([dux,duy])*[dux,duy]) / int2d(Th)(tr(GRAD(ux,uy))*GRAD(ux,uy) + tr([ux,uy])*[ux,uy]));
cout << ".";
cout.flush;
if(err < arrns) break;
}
/* Newton loop has not converged */
if(err > arrns) {
cout << "NS Warning : non convergence : err = " << err << " / eps = " << epsilon << endl;
}
}
cout << endl;
solvefluid = 0; /* It is not necessary to solve ns until the mesh is moved */
nflsolved++;
}
}//EOF
//////////////////////////////////////////////////////////////////////////
/////////////// Macro for the adjoint Navier-Stokes equation ///////////
//////////////////////////////////////////////////////////////////////////
macro adjoint() {
solve probadjoint([vx, vy, q], [wx, wy, qq]) =
int2d(Th) (2*nu*tr(EPS(vx, vy))*EPS(wx, wy) - q*div(wx, wy) -qq * div(vx, vy) + navsto*(tr(UgradV(wx, wy, ux, uy))*[vx, vy] + tr(UgradV(ux,uy,wx,wy))*[vx,vy]))
+int2d(Th)(- 4*nu*delta*tr(EPS(ux,uy))*EPS(wx,wy))
+int1d(Th,2)(-(1-delta)*((ux-uxx)*wx+(uy-uyy)*wy))
+on(1,3,5, vx=0, vy=0);
}//EOM
//////////////////////////////////////////////////////////////////////////
//////// Macro for the velocity extension/regularization problem ///////
//////////////////////////////////////////////////////////////////////////
macro regulbord() {
solve regb([dpx, dpy],[phix, phiy]) =
int2d(Th)(gamma*tr(SIG(dpx, dpy))*EPS(phix, phiy))
+int1d(Th,3)(gamma1*tr(gradT(dpx))*gradT(phix))
+int1d(Th,3)(gamma1*tr(gradT(dpy))*gradT(phiy))
+int1d(Th,3)(gradDF*dotN(phix, phiy))
+int1d(Th,4)(1./epspen*dotN(dpx,dpy)*dotN(phix,phiy))
+on(1, 2, dpx=0)
+on(1, 2, dpy=0);
} //EOM
string strname = getARGV("--resu", "");
cout << "Results and figures will be saved in " << strname << endl;
//strname = "resu/"+strname;
system("mkdir -p "+strname);
savemesh(Th, strname+"/initmesh.msh");
/* Save the command */
ofstream cmd(strname+"/commande.sh");
for(int ii = 0; ii < ARGV.n; ii++) {
cmd << ARGV[ii] << " ";
}
cmd << endl;
cmd.flush;
ofstream r(strname+"/out.dat");
ofstream volc(strname+"/voltarget");
volc << ctarget << endl;
volc.flush;
// In this block, we compute a reference profile from a real domain. The goal of test-case 3 is to recover \Omega from this profile.
if(config == 3) {
Th = movemesh(Th, [x, y+0.2*x*(ll-x)]);
plot(Th, ps=strname+"/refmesh.ps");
savemesh(Th, strname+"/mesh_ref.msh");
ns;
uxx = ux;
uyy = uy; // uxx and uyy will only be used on border number 2 (outlet)
Th = readmesh(meshname);
solvefluid = 1; // The mesh has changed, we need to recompute the solution of NS
ux = 0;
uy = 0;
uxx = uxx;
uyy = uyy;
plot([uxx, uyy], cmm="uxx, uyy",wait=1);
}
/* Calculation of the mean curvature */
calculconnect(Th, ordre);
courbure(Th, ordre, kappa[]);
kappa = kc * kappa; // Adjust sign
/* Solve Navier-Stokes equations on the initial shape */
ns;
/* Initial value of the objective function */
J0 = J;
if(config == 3) {
ofstream proi(strname+"/initial_profil.dat");
for(real yy=0;yy<1;yy+=.01){
proi << yy << " " << ux(ll, yy) << " " << uy(ll,yy) << endl;
}
proi.flush;
}
plot(Th, ps=strname+"/initial_mesh.ps");
/* Save initial value of J */
{
ofstream j0of(strname+"/J0");
j0of << J0 << endl;
j0of.flush;
}
sv = 1+errc; // Arbitrary choice of sv such that sv > errc (to ensure to enter the main loop)
/* output of initial data */
r << J << " " << EL << " " << contr(Th) << " " << l << " " << sv << " " << b << " " << minarea << endl;
/* Start of the main loop; ending criterion: sv = L^2 norm of the shape gradient is < errc */
for (jj = 0; (sv > errc) && (jj < jjmax); jj++) {
Th2 = Th; // Update the geometry
ns; // Solve the NS equation if needed
adjoint; // Solve the adjoint system
/* Solve the velocity extension/regularization problem to get the descent direction;
the descent direction is [dpx,dpy] */
regulbord;
L0 = EL; // Value of the augmented Lagrangian
tau1 = tau;
for (kk = 0;kk < kkmax; kk++) {
cout << "movemesh tau = "<< tau1 << endl;
minarea = checkmovemesh(Th2, [x + tau1*dpx, y + tau1*dpy]);
/* Try to adapt the mesh in case one of the triangles becomes degenerate */
if(optraff) {
/* No adaptation if the minimal area is larger than parameter minarea0 or if we already tried remeshing 3 times in this loop */
if (minarea > minarea0 || adaptcount>=3) {
Th = movemesh(Th2, [x + tau1*dpx, y + tau1*dpy]);
solvefluid = 1;
}
else {
cout << "*** ADAPTMESH *** minarea = " << minarea << " minarea0 = " << minarea0 << endl;
Th = adaptmesh(Th, hmax=raff, hmin=raff/sqrt(2), ratio=1.5);
cout << " new minarea = " << minarea << endl;
minarea = checkmovemesh(Th, [x, y]);
solvefluid = 1;
kappa = 0; /* DO NOT REMOVE */
calculconnect(Th, ordre);
adaptcount++;
}
if(adaptcount>=3) {
cout << "Too many consecutive mesh adaptations. Giving up mesh adaptation" << endl;
adaptcount = 0;
}
}
else {
Th = movemesh(Th2, [x + tau1*dpx, y + tau1*dpy]);
solvefluid = 1;
}
/* Calculate the mean curvature of the new shape */
courbure(Th, ordre, kappa[]);
kappa = kc * kappa;
/* Solve the Navier-Stokes and adjoint equations on the new shape */
ns;
/* adjoint; */
/* New value of the objective function */
L1 = EL;
tau1/= 2;
cout << "L = " << L1 << " / L0 = " << L0 << " (variation = " << 100*(L1-L0)/L0 << "%)" << endl;
/* Accept iteration as soon as the value of the augmented Lagrangian is decreased */
if (L1 < L0) {
break;
}
}
cout << "kk = " << kk << endl;
/* Maximum number of iterations has been reached, and no decrease in the value of the augmented Lagrangian is observed */
if (kk == kkmax) {
cout << "Warning : L_{n+1}>L_{n} (L0 = " << L0 << ", l = " << l << ")" << endl;
}
/* L^2 norm of the shape gradient */
sv = sqrt(int1d(Th, 3)(dpx^2+dpy^2));
/* Print output */
r << J << " " << EL << " " << contr(Th) << " " << l << " " << sv << " " << b << " " << minarea << endl;
/* Update of the values of the coefficients of the augmented Lagrangian */
l = l + b * (contr(Th) - ctarget);
if (b < btarget) {
b *= alpha;
}
/* Plot shape and save post-processing data */
if(save && (jj % every == 0)) {
plot(Th, [dpx, dpy], ps=strname+"/displacement"+ct+".ps", wait=0, value=1, cmm="Iteration "+jj+"/"+jjmax+" (config "+config+")");
Vh tmpvh = tr(EPS(ux,uy))*EPS(ux,uy);
plot(tmpvh, ps=strname+"/energs.ps", cmm="Dissipated energy", wait=0, fill=1, value=1);
plot(Th, [ux, uy], ps=strname+"/velocity"+ct+".ps", wait=0, value=1, cmm="Iteration "+jj+"/"+jjmax+" (config "+config+")");
mx=sqrt(dx(dpx)^2+dy(dpy)^2);
plot(mx, fill=1, value=1,cmm="\|V\|", ps=strname+"/gradnorm"+ct+".ps");
plot(Th, ps=strname+"/mesh"+ct+".ps", wait=0, value=1, cmm="Iteration "+jj+"/"+jjmax+" (config "+config+")");
savemesh(Th, strname+"/mesh"+ct+".msh");
ofstream prof(strname+"/profil"+ct+".dat");
for(real yy=0;yy<1;yy+=.01){
prof << yy << " " << ux(ll, yy) << " " << uy(ll,yy) << endl;
}
prof.flush;
ct++;
r.flush;
J1 = J;
}
cout << "jj = " << jj << endl;
}
cout << "NS solved " << nflsolved << " times."<< endl;
/* Save the final shape */
if(save) {
plot(Th, [ux,uy], ps=strname+"/velocity.ps", cmm="Velocity", wait=0);
savemesh(Th, strname+"/mesh_final.msh");
r.flush;
ofstream prof(strname+"/final_profil.dat");
for(real yy=0;yy<1;yy+=.01){
prof << yy << " " << ux(ll, yy) << " " << uy(ll,yy) << endl;
}
prof.flush;
ofstream pror(strname+"/ref_profil.dat");
for(real yy=0;yy<1;yy+=.01){
pror << yy << " " << uxx(ll, yy) << " " << uyy(ll,yy) << endl;
}
pror.flush;
}