forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cifar_input.py
115 lines (101 loc) · 4.37 KB
/
cifar_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CIFAR dataset input module.
"""
import tensorflow as tf
def build_input(dataset, data_path, batch_size, mode):
"""Build CIFAR image and labels.
Args:
dataset: Either 'cifar10' or 'cifar100'.
data_path: Filename for data.
batch_size: Input batch size.
mode: Either 'train' or 'eval'.
Returns:
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, num_classes]
Raises:
ValueError: when the specified dataset is not supported.
"""
image_size = 32
if dataset == 'cifar10':
label_bytes = 1
label_offset = 0
num_classes = 10
elif dataset == 'cifar100':
label_bytes = 1
label_offset = 1
num_classes = 100
else:
raise ValueError('Not supported dataset %s', dataset)
depth = 3
image_bytes = image_size * image_size * depth
record_bytes = label_bytes + label_offset + image_bytes
data_files = tf.gfile.Glob(data_path)
file_queue = tf.train.string_input_producer(data_files, shuffle=True)
# Read examples from files in the filename queue.
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
_, value = reader.read(file_queue)
# Convert these examples to dense labels and processed images.
record = tf.reshape(tf.decode_raw(value, tf.uint8), [record_bytes])
label = tf.cast(tf.slice(record, [label_offset], [label_bytes]), tf.int32)
# Convert from string to [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record, [label_offset + label_bytes], [image_bytes]),
[depth, image_size, image_size])
# Convert from [depth, height, width] to [height, width, depth].
image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32)
if mode == 'train':
image = tf.image.resize_image_with_crop_or_pad(
image, image_size+4, image_size+4)
image = tf.random_crop(image, [image_size, image_size, 3])
image = tf.image.random_flip_left_right(image)
# Brightness/saturation/constrast provides small gains .2%~.5% on cifar.
# image = tf.image.random_brightness(image, max_delta=63. / 255.)
# image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
# image = tf.image.random_contrast(image, lower=0.2, upper=1.8)
image = tf.image.per_image_standardization(image)
example_queue = tf.RandomShuffleQueue(
capacity=16 * batch_size,
min_after_dequeue=8 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 16
else:
image = tf.image.resize_image_with_crop_or_pad(
image, image_size, image_size)
image = tf.image.per_image_standardization(image)
example_queue = tf.FIFOQueue(
3 * batch_size,
dtypes=[tf.float32, tf.int32],
shapes=[[image_size, image_size, depth], [1]])
num_threads = 1
example_enqueue_op = example_queue.enqueue([image, label])
tf.train.add_queue_runner(tf.train.queue_runner.QueueRunner(
example_queue, [example_enqueue_op] * num_threads))
# Read 'batch' labels + images from the example queue.
images, labels = example_queue.dequeue_many(batch_size)
labels = tf.reshape(labels, [batch_size, 1])
indices = tf.reshape(tf.range(0, batch_size, 1), [batch_size, 1])
labels = tf.sparse_to_dense(
tf.concat(values=[indices, labels], axis=1),
[batch_size, num_classes], 1.0, 0.0)
assert len(images.get_shape()) == 4
assert images.get_shape()[0] == batch_size
assert images.get_shape()[-1] == 3
assert len(labels.get_shape()) == 2
assert labels.get_shape()[0] == batch_size
assert labels.get_shape()[1] == num_classes
# Display the training images in the visualizer.
tf.summary.image('images', images)
return images, labels