Skip to content

Latest commit

 

History

History
149 lines (98 loc) · 4.89 KB

README.md

File metadata and controls

149 lines (98 loc) · 4.89 KB
title emoji colorFrom colorTo sdk app_port
SocialAI School Demo
🧙🏻‍♂️
gray
indigo
docker
7860

SocialAI

This repository is the official implementation of SocialAI: Benchmarking Socio-Cognitive Abilities inDeep Reinforcement Learning Agents.

The website of the project is here

The code is based on: minigrid

Additional repositories used: BabyAI RIDE astar

Installation

Create and activate your conda env

conda create --name social_ai python=3.7
conda activate social_ai
conda install -c anaconda graphviz 

Install the required packages

pip install -r requirements.txt
pip install -e torch-ac
pip install -e gym-minigrid 
conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia

Jupyter Notebook

Install the jupyter:

pip install jupyter

Start the jupyter notebook with examples of usage with:

jupyter notebook SocialAI_playground.ipynb 

You can also play with our google colab notebook

Interactive policy

To run an enviroment in the interactive mode run:

python -m scripts.manual_control.py 

You can test different enviroments with the --env parameter.

Interactive demo

You can test our interactive hugginface spaces demo

There you can create different enviroments and control the agent inside them.

RL experiments

Training

Minimal example

To train a policy, run:

python -m scripts.train --model test_model_name/1 --seed 1  --compact-save --algo ppo --env SocialAI-AsocialBoxInformationSeekingParamEnv-v1 --dialogue --save-interval 1 --log-interval 1 --frames 5000000 --multi-modal-babyai11-agent --arch original_endpool_res --custom-ppo-2

The policy should be above 0.95 success rate after the first 2M environment interactions.

To plot the curve run:

python data_visualize.py test_model_name

To visualize the policy, run:

python -m scripts.visualize --model storage/test_model_name/1/ --pause 0.1 --seed $RANDOM --episodes 20 --gif viz/test --env-name SocialAI-AsocialBoxInformationSeekingParamEnv-v1 ```

To evaluate a on a different environment, run:

python -m scripts.evaluate_new --episodes 500  --test-set-seed 1  --model-label test_model --eval-env SocialAI-TestLanguageFeedbackSwitchesInformationSeekingParamEnv-v1  --model-to-evaluate storage/test/ --n-seeds 8

Recreating all the experiments

Regular machine

To run the experiments on a regular machine run_SAI_final_case_studies.txt contains all the bash commands to run the RL experiments.

Slurm based cluster (todo:)

To recreate all the experiments from the paper on a slurm based server configure the campaign_launcher.py script and run:

python campaign_launcher.py run_SAI_final_case_studies.txt

LLM experiments

For LLMs set your OPENAI_API_KEY (and HF_TOKEN) variable in ~/.bashrc or wherever you want.

Creating in-context examples

To create in_context examples you can use the create_LLM_examples.py script.

This script will open an interactive window, where you can manually control the agent. By default, nothing is saved. The general procedure is to press 'enter' to skip over environments which you don't like. When you see a wanted enviroment, move the agent in the wanted position and start recording (press 'r'). The current and the following steps in the episode will be recorded. Then control the agent and finish the episode. The new episode will start and recording will be turned off again.

If you already like some of the previously collected examples and want to append to them you can use the --load argument.

Evaluating LLM-based agents

The script eval_LLMs.sh contains the bash commands to run all the experiments in the paper.

Here is an example of running evaluation on the text-ada-001 model on the AsocialBox environment:

python -m scripts.LLM_test  --episodes 10 --max-steps 15 --model text-ada-001 --env-args size 7 --env-name SocialAI-AsocialBoxInformationSeekingParamEnv-v1 --in-context-path llm_data/in_context_examples/in_context_asocialbox_SocialAI-AsocialBoxInformationSeekingParamEnv-v1_2023_07_19_19_28_48/episodes.pkl

If you want to control the agent yourself you can set the model to interactive. dummy agent just executes the move forward action, and random executes a random action. These agent are usefull for testing.