diff --git a/docs/user_guide/productionizing/configuring_access_to_gpus.md b/docs/user_guide/productionizing/configuring_access_to_gpus.md index 12f91a943b..e689187e67 100644 --- a/docs/user_guide/productionizing/configuring_access_to_gpus.md +++ b/docs/user_guide/productionizing/configuring_access_to_gpus.md @@ -8,7 +8,7 @@ Along with compute resources like CPU and memory, you may want to configure and access GPU resources. -Flyte provides different ways to request accelerator resources directly from the task decorator. This page covers the requirements and procedures to leverage them. +Flyte provides different ways to request accelerator resources directly from the task decorator. >The examples in this section use [ImageSpec](https://docs.flyte.org/en/latest/user_guide/customizing_dependencies/imagespec.html#imagespec), a Flyte feature that builds a custom container image without a Dockerfile. Install it using `pip install flytekitplugins-envd`. @@ -23,7 +23,7 @@ image = ImageSpec( name="pytorch", python_version="3.10", packages=["torch"], - builder="envd", + builder="default", registry="", ) @@ -98,7 +98,7 @@ configuration: ## Requesting a specific GPU device -In this example, the goal is to run the task on a specific type of accelerator: NVIDIA Tesla V100 : +The goal is to run the task on a specific type of accelerator: NVIDIA Tesla V100 in the following example: ```python @@ -110,7 +110,7 @@ image = ImageSpec( name="pytorch", python_version="3.10", packages=["torch"], - builder="envd", + builder="default", registry="", ) @@ -190,7 +190,7 @@ image = ImageSpec( name="pytorch", python_version="3.10", packages=["torch"], - builder="envd", + builder="default", registry="", ) @@ -268,7 +268,7 @@ The ``2g.10gb`` value comes from the [NVIDIA A100 supported instance profiles](h ## Additional use cases -### Request an A100 device with no preference for partition configuration +### Request an A100 device with no preference on partition configuration Example: @@ -281,7 +281,7 @@ image = ImageSpec( name="pytorch", python_version="3.10", packages=["torch"], - builder="envd", + builder="default", registry="", ) @@ -294,21 +294,13 @@ def gpu_available() -> bool: #### How it works? -By default, the task is scheduled on a `2g.10gb` MIG partition. +In this case, the task is scheduled with a `2g.10gb` MIG instance profile by default. `flytepropeller` only injects the node selector that matches nodes with an `A100` device: ```yaml -spec: - affinity: - nodeAffinity: - requiredDuringSchedulingIgnoredDuringExecution: - nodeSelectorTerms: - - matchExpressions: - - key: nvidia.com/gpu.accelerator - operator: In - values: - - nvidia-tesla-a100 + + ``` @@ -324,7 +316,7 @@ image = ImageSpec( name="pytorch", python_version="3.10", packages=["torch"], - builder="envd", + builder="default", registry="", )