-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathmake.go
322 lines (290 loc) · 8.75 KB
/
make.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
package desync
import (
"context"
"crypto"
"fmt"
"io"
"os"
"sync"
"sync/atomic"
)
// IndexFromFile chunks a file in parallel and returns an index. It does not
// store chunks! Each concurrent chunker starts filesize/n bytes apart and
// splits independently. Each chunk worker tries to sync with it's next
// neighbor and if successful stops processing letting the next one continue.
// The main routine reads and assembles a list of (confirmed) chunks from the
// workers, starting with the first worker.
// This algorithm wastes some CPU and I/O if the data doesn't contain chunk
// boundaries, for example if the whole file contains nil bytes. If progress
// is not nil, it'll be updated with the confirmed chunk position in the file.
func IndexFromFile(ctx context.Context,
name string,
n int,
min, avg, max uint64,
pb ProgressBar,
) (Index, ChunkingStats, error) {
stats := ChunkingStats{}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
var digestFlag uint64
if Digest.Algorithm() == crypto.SHA512_256 {
digestFlag = CaFormatSHA512256
}
index := Index{
Index: FormatIndex{
FeatureFlags: CaFormatExcludeNoDump | digestFlag,
ChunkSizeMin: min,
ChunkSizeAvg: avg,
ChunkSizeMax: max,
},
}
// If our input file has a catar header, copy its feature flags into the index
f, err := os.Open(name)
if err != nil {
return index, stats, err
}
fDecoder := NewFormatDecoder(f)
piece, err := fDecoder.Next()
if err == nil {
switch t := piece.(type) {
case FormatEntry:
index.Index.FeatureFlags |= t.FeatureFlags
}
}
f.Close()
size, err := GetFileSize(name)
if err != nil {
return index, stats, err
}
// Adjust n if it's a small file that doesn't have n*max bytes
nn := size/max + 1
if nn < uint64(n) {
n = int(nn)
}
span := size / uint64(n) // initial spacing between chunkers
// Setup and start the progressbar if any
pb.SetTotal(int(size))
pb.Start()
defer pb.Finish()
// Null chunks is produced when a large section of null bytes is chunked. There are no
// split points in those sections so it's always of max chunk size. Used for optimizations
// when chunking files with large empty sections.
nullChunk := NewNullChunk(max)
// Create/initialize the workers
worker := make([]*pChunker, n)
for i := 0; i < n; i++ {
f, err := os.Open(name) // open one file per worker
if err != nil {
return index, stats, err
}
defer f.Close()
start := span * uint64(i) // starting position for this chunker
mChunks := (size-start)/min + 1 // max # of chunks this worker can produce
s, err := f.Seek(int64(start), io.SeekStart)
if err != nil {
return index, stats, err
}
if uint64(s) != start {
return index, stats, fmt.Errorf("requested seek to position %d, but got %d", start, s)
}
c, err := NewChunker(f, min, avg, max)
if err != nil {
return index, stats, err
}
p := &pChunker{
chunker: c,
results: make(chan IndexChunk, mChunks),
done: make(chan struct{}),
offset: start,
stats: &stats,
nullChunk: nullChunk,
}
worker[i] = p
}
// Link the workers, each one gets a pointer to the next, the last one gets nil
for i := 1; i < n; i++ {
worker[i-1].next = worker[i]
}
// Start the workers
for _, w := range worker {
go w.start(ctx)
defer w.stop() // shouldn't be necessary, but better be safe
}
// Go through the workers, starting with the first one, taking all chunks
// from their bucket before moving on to the next. It's possible that a worker
// reaches the end of the stream before the following worker does (eof=true),
// don't advance to the next worker in that case.
for _, w := range worker {
for chunk := range w.results {
// Assemble the list of chunks in the index
index.Chunks = append(index.Chunks, chunk)
pb.Set(int(chunk.Start + chunk.Size))
stats.incAccepted()
}
// Done reading all chunks from this worker, check for any errors
if w.err != nil {
return index, stats, w.err
}
// Stop if this worker reached the end of the stream (it's not necessarily
// the last worker!)
if w.eof {
break
}
}
return index, stats, nil
}
// Parallel chunk worker - Splits a stream and stores start, size and ID in
// a buffered channel to be sync'ed with surrounding chunkers.
type pChunker struct {
// "bucket" to store chunk results in until they are sync'ed with the previous
// chunker and then recorded
results chan IndexChunk
// single-stream chunker used by this worker
chunker Chunker
// starting position in the stream for this worker, needed to calculate
// the absolute position of every boundry that is returned
offset uint64
once sync.Once
done chan struct{}
err error
next *pChunker
eof bool
sync IndexChunk
stats *ChunkingStats
// Null chunk for optimizing chunking sparse files
nullChunk *NullChunk
}
func (c *pChunker) start(ctx context.Context) {
defer close(c.results)
defer c.stop()
for {
select {
case <-ctx.Done():
c.err = Interrupted{}
return
case <-c.done:
return
default: // We weren't asked to stop and weren't interrupted, carry on
}
start, b, err := c.chunker.Next()
if err != nil {
c.err = err
return
}
c.stats.incProduced()
start += c.offset
if len(b) == 0 {
// TODO: If this worker reached the end of the stream and it's not the
// last one, we should probably stop all following workers. Meh, shouldn't
// be happening for large file or save significant CPU for small ones.
c.eof = true
return
}
// Calculate the chunk ID
id := Digest.Sum(b)
// Store it in our bucket
chunk := IndexChunk{Start: start, Size: uint64(len(b)), ID: id}
c.results <- chunk
// Check if the next worker already has this chunk, at which point we stop
// here and let the next continue
if c.next != nil {
inSync, zeroes := c.next.syncWith(chunk)
if inSync {
return
}
numNullChunks := int(int(zeroes) / len(c.nullChunk.Data))
if numNullChunks > 0 {
if err := c.chunker.Advance(numNullChunks * len(c.nullChunk.Data)); err != nil {
c.err = err
return
}
nc := chunk
for i := 0; i < numNullChunks; i++ {
nc = IndexChunk{Start: nc.Start + nc.Size, Size: uint64(len(c.nullChunk.Data)), ID: c.nullChunk.ID}
c.results <- nc
zeroes -= uint64(len(c.nullChunk.Data))
}
}
}
// If the next worker has stopped and has no more chunks in its bucket,
// we want to skip that and try to sync with the one after
if c.next != nil && !c.next.active() && len(c.next.results) == 0 {
c.next = c.next.next
}
}
}
func (c *pChunker) stop() {
c.once.Do(func() { close(c.done) })
}
func (c *pChunker) active() bool {
select {
case <-c.done:
return false
default:
return true
}
}
// Returns true if the given chunk lines up with one in the current bucket. Also returns
// the number of zero bytes this chunker has found from 'chunk'. This helps the previous
// chunker to skip chunking over those areas and put a null-chunks (always max size) in
// place instead.
func (c *pChunker) syncWith(chunk IndexChunk) (bool, uint64) {
// Read from our bucket until we're past (or match) where the previous worker
// currently is
var prev IndexChunk
for chunk.Start > c.sync.Start {
prev = c.sync
var ok bool
select {
case c.sync, ok = <-c.results:
if !ok {
return false, 0
}
default: // Nothing in my bucket? Move on
return false, 0
}
}
// Did we find a match with the previous worker? If so, the previous worker
// should stop and this one will keep going
if chunk.Start == c.sync.Start && chunk.Size == c.sync.Size {
return true, 0
}
// The previous chunker didn't sync up with this one, but perhaps we're in a large area
// of nulls (chunk split points are unlikely to line up). If so we can tell the previous
// chunker how many nulls are coming so it doesn't need to do all the work again and can
// skip ahead, producing null-chunks of max size.
var n uint64
if c.sync.ID == c.nullChunk.ID && prev.ID == c.nullChunk.ID {
// We know there're at least some null chunks in front of the previous chunker. Let's
// see if there are more in our bucket so we can tell the previous chunker how far to
// skip ahead.
n = prev.Start + prev.Size - chunk.Start
for {
var ok bool
select {
case c.sync, ok = <-c.results:
if !ok {
return false, n
}
default: // Nothing more in my bucket? Move on
return false, n
}
if c.sync.ID != c.nullChunk.ID { // Hit the end of the null chunks, stop here
break
}
n += uint64(len(c.nullChunk.Data))
}
}
return false, n
}
// ChunkingStats is used to report statistics of a parallel chunking operation.
type ChunkingStats struct {
ChunksAccepted uint64
ChunksProduced uint64
}
func (s *ChunkingStats) incAccepted() {
atomic.AddUint64(&s.ChunksAccepted, 1)
}
func (s *ChunkingStats) incProduced() {
atomic.AddUint64(&s.ChunksProduced, 1)
}