forked from lannn2410/streamingksubmodular
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Network.h
46 lines (36 loc) · 1.56 KB
/
Network.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#pragma once
#include <vector>
#include <map>
#include "Kcommon.h"
using namespace std;
class Network
{
public:
Network();
~Network();
int get_no_nodes();
// for social network
int get_out_degree(uint n);
bool read_network_from_file(int no_nodes, string file, bool is_directed);
void generate_random_network(int no_nodes, double p, bool is_directed);
uint sample_influence(const kseeds & seeds); // estimate influence, input is a list of pairs, each pair is (node_id, product)
uint sample_influence_reverse(const kseeds & seeds); // estimate influence but use reverse sampling
uint sample_influence_linear_threshold(const kseeds & seeds);
// for sensor
bool read_sensor_data(int no_nodes, string file);
double get_entropy(const kseeds & seeds);
private:
void clear();
void recursive_entropy(int idx, const kseeds & seeds, double & re, double & prob); // used to calculate entropy
uint number_of_nodes;
Kcommon * common_instance;
// for social network
bool is_directed;
map<uint, uint> map_node_id; // map from true id -> ordered id (used for read graph from file)
vector<vector<uint>> out_neighbors, in_neighbors; // map from node_id -> list of out (in) neighbor of the node
vector<vector<uint>> preferences; // map from node_id -> preferences on partition - this impacts the weight of an out-edge with adopting different product
vector<double> probabilities; // map from preference -> probability to influence
// for sensor data
vector<ksensors> sensor_data; // map from loc id -> kind of sensor (0 temp, 1 humid, 2 light) -> bin
int max_no_bin; // no. bins
};