forked from patrickrchao/JailbreakingLLMs
-
Notifications
You must be signed in to change notification settings - Fork 2
/
language_models.py
237 lines (211 loc) · 8.01 KB
/
language_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import openai
import anthropic
import os
import time
import torch
import gc
from typing import Dict, List
import google.generativeai as palm
class LanguageModel():
def __init__(self, model_name):
self.model_name = model_name
def batched_generate(self, prompts_list: List, max_n_tokens: int, temperature: float):
"""
Generates responses for a batch of prompts using a language model.
"""
raise NotImplementedError
class HuggingFace(LanguageModel):
def __init__(self,model_name, model, tokenizer):
self.model_name = model_name
self.model = model
self.tokenizer = tokenizer
self.eos_token_ids = [self.tokenizer.eos_token_id]
def batched_generate(self,
full_prompts_list,
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
inputs = self.tokenizer(full_prompts_list, return_tensors='pt', padding=True)
inputs = {k: v.to(self.model.device.index) for k, v in inputs.items()}
# Batch generation
if temperature > 0:
output_ids = self.model.generate(
**inputs,
max_new_tokens=max_n_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=self.eos_token_ids,
top_p=top_p,
)
else:
output_ids = self.model.generate(
**inputs,
max_new_tokens=max_n_tokens,
do_sample=False,
eos_token_id=self.eos_token_ids,
top_p=1,
temperature=1, # To prevent warning messages
)
# If the model is not an encoder-decoder type, slice off the input tokens
if not self.model.config.is_encoder_decoder:
output_ids = output_ids[:, inputs["input_ids"].shape[1]:]
# Batch decoding
outputs_list = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
for key in inputs:
inputs[key].to('cpu')
output_ids.to('cpu')
del inputs, output_ids
gc.collect()
torch.cuda.empty_cache()
return outputs_list
def extend_eos_tokens(self):
# Add closing braces for Vicuna/Llama eos when using attacker model
self.eos_token_ids.extend([
self.tokenizer.encode("}")[1],
29913,
9092,
16675])
class GPT(LanguageModel):
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 0.5
API_MAX_RETRY = 5
API_TIMEOUT = 20
openai.api_key = os.getenv("OPENAI_API_KEY")
def generate(self, conv: List[Dict],
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries, OpenAI API format
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
response = openai.ChatCompletion.create(
model = self.model_name,
messages = conv,
max_tokens = max_n_tokens,
temperature = temperature,
top_p = top_p,
request_timeout = self.API_TIMEOUT,
)
output = response["choices"][0]["message"]["content"]
break
except openai.error.OpenAIError as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]
class Claude():
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 1
API_MAX_RETRY = 5
API_TIMEOUT = 20
API_KEY = os.getenv("ANTHROPIC_API_KEY")
def __init__(self, model_name) -> None:
self.model_name = model_name
self.model= anthropic.Anthropic(
api_key=self.API_KEY,
)
def generate(self, conv: List,
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of conversations
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
completion = self.model.completions.create(
model=self.model_name,
max_tokens_to_sample=max_n_tokens,
prompt=conv,
temperature=temperature,
top_p=top_p
)
output = completion.completion
break
except anthropic.APIError as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(self.API_QUERY_SLEEP)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]
class PaLM():
API_RETRY_SLEEP = 10
API_ERROR_OUTPUT = "$ERROR$"
API_QUERY_SLEEP = 1
API_MAX_RETRY = 5
API_TIMEOUT = 20
default_output = "I'm sorry, but I cannot assist with that request."
API_KEY = os.getenv("PALM_API_KEY")
def __init__(self, model_name) -> None:
self.model_name = model_name
palm.configure(api_key=self.API_KEY)
def generate(self, conv: List,
max_n_tokens: int,
temperature: float,
top_p: float):
'''
Args:
conv: List of dictionaries,
max_n_tokens: int, max number of tokens to generate
temperature: float, temperature for sampling
top_p: float, top p for sampling
Returns:
str: generated response
'''
output = self.API_ERROR_OUTPUT
for _ in range(self.API_MAX_RETRY):
try:
completion = palm.chat(
messages=conv,
temperature=temperature,
top_p=top_p
)
output = completion.last
if output is None:
# If PaLM refuses to output and returns None, we replace it with a default output
output = self.default_output
else:
# Use this approximation since PaLM does not allow
# to specify max_tokens. Each token is approximately 4 characters.
output = output[:(max_n_tokens*4)]
break
except Exception as e:
print(type(e), e)
time.sleep(self.API_RETRY_SLEEP)
time.sleep(1)
return output
def batched_generate(self,
convs_list: List[List[Dict]],
max_n_tokens: int,
temperature: float,
top_p: float = 1.0,):
return [self.generate(conv, max_n_tokens, temperature, top_p) for conv in convs_list]