-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeepHP_reconstructing_HPS_slides_main.py
154 lines (127 loc) · 5.62 KB
/
DeepHP_reconstructing_HPS_slides_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
#============================================================
#
# Deep HistoPathology (DeepHP)
# Test Full HPS Image reconstruction and cancer detection
#
# author: Francisco Perdigon Romero
# email: [email protected]
# github id: fperdigon
#
#===========================================================
import Data_Preparation.data_preparation as data_preparation
import DeepHP.dl_pipeline as dl_pipeline
import Utils.utils as utils
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.gridspec as gridspec
import os
from tqdm import tqdm
import numpy as np
from scipy.ndimage import gaussian_filter, grey_dilation
if __name__ == "__main__":
data_folder = './data'
recons_folder = 'reconst_data'
train_list_file = './Data_Preparation/cases_train.txt'
val_list_file = './Data_Preparation/cases_val.txt'
test_list_file = './Data_Preparation/cases_test.txt'
# Reading hps from test to generate images
test_list = []
with open(test_list_file) as fp:
Lines = fp.readlines()
for line in Lines:
test_list.append(line.strip())
# Generate HPS image from patches
hps_path_list = []
pbar = tqdm(total=len(test_list))
pbar.set_description(desc=' Generating HPS slide image')
for hps in test_list:
df = data_folder + '/' + data_preparation.uzip_folder
# Determines if the hps folder exists
if os.path.exists(df + '/' + hps):
# determine if the image was previously reconstructed
if not os.path.exists(data_folder + '/' + recons_folder + '/' + hps + '_hps.png'):
[img_big, class_patches] = utils.hps_image_reconst_from_patches(hps, df)
hps_path = utils.save_reconst_hps_to_png(img=img_big,
hps_slide=hps,
save_folder=data_folder + '/' + recons_folder)
hps_path_list.append(hps_path)
else:
hps_path_list.append(data_folder + '/' + recons_folder + '/' + hps + '_hps.png')
else:
print(hps + ' folder does not exist')
pbar.update(1)
pbar.close()
# Predict Cancer on the HPS images and Generate Heatmap
pbar = tqdm(total=len(hps_path_list))
pbar.set_description(desc=' Generating HPS Predictions heatmaps')
for hps_path in hps_path_list:
# Generate patches from HPS image
patch_size = (50, 50)
out_dict = utils.load_img_generate_patch_array(hps_path, patch_size)
patch_size = out_dict['patch_size']
patch_per_row = out_dict['patch_per_row']
patch_per_column = out_dict['patch_per_column']
patches_array = out_dict['patches_array']
org_hps = out_dict['org_hps']
# Apply RGB normalization to each patch
# for i in range(patches_array.shape[0]):
# patches_array[i, :, :, :] = dl_pipeline.normalize_rgb(patches_array[i, :, :, :])
# Deep Learning Model Prediction
predictions = dl_pipeline.inference_dl(patches_array, model_filepath='weights.best.hdf5')
# predictions = dl_pipeline.inference_dl(patches_array, model_filepath='norm_weights.best.hdf5')
# Get cancer cell prediction
cancer_cells_prediction = predictions[:, 1]
# Heatmap generation
heatmap = utils.heatmap_img_from_predictions(org_hps, cancer_cells_prediction, patch_size, patch_per_row, patch_per_column)
# Dilate operation to reduce the fading intrudiced by the gaussian filter
for i in range(10):
heatmap = grey_dilation(heatmap, footprint=np.ones((3, 3)))
# Apply a Gaussian filter to smooth the heatmap
heatmap = gaussian_filter(heatmap, sigma=25)
# Generating images
def transparent_cmap(cmap, alpha_th=70, N=255):
"Copy colormap and set alpha values"
mycmap = cmap.__copy__()
mycmap._init()
alpha_values = np.linspace(0, 1, N + 4)
alpha_values[alpha_values < alpha_th / N] = 0
alpha_values[alpha_values >= alpha_th / N] = 1
mycmap._lut[:, -1] = alpha_values
return mycmap
# Make the figure
f = plt.figure()
gs = gridspec.GridSpec(nrows=1, ncols=3, left=0.1, bottom=0.25, right=0.95, top=0.95,
wspace=0.05, hspace=0., width_ratios=[1, 1, 0.03])
a0 = plt.subplot(gs[0])
a1 = plt.subplot(gs[1])
a2 = plt.subplot(gs[2])
# Using subplots (It works as well)
# f, (a0, a1, a2) = plt.subplots()
# f, (a0, a1, a2) = plt.subplots(1, 3, gridspec_kw={'width_ratios': [1, 1, 0.03]})
# plt.tight_layout()
# Axis 0
a0.imshow(org_hps)
a0.axis('off')
# Axis 1
a1.imshow(org_hps)
mycmap = transparent_cmap(cmap=plt.get_cmap('jet'), alpha_th=int(0.5 * 255), N=255)
aa1 = a1.imshow(heatmap, cmap=mycmap, alpha=0.3)
#a1.imshow(heatmap)
a1.axis('off')
# # Axis 2
norm = matplotlib.colors.Normalize(vmin=0, vmax=1)
cbar = f.colorbar(matplotlib.cm.ScalarMappable(norm=norm, cmap='jet'),
ax=a2, pad=.05, extend='neither', fraction=1)
for t in cbar.ax.get_yticklabels():
t.set_fontsize(5)
a2.axis('off')
fig1 = plt.gcf()
plt.show(block=False)
# plt.show(block=True)
print('\nSaving image ...')
fig1.savefig(hps_path + '_predictions.jpg', dpi=500, bbox_inches='tight', pad_inches=0.5)
print('\nSaving image DONE.')
plt.close()
pbar.update(1)
pbar.close()