-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrainer.py
189 lines (144 loc) · 8.14 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import time
import torch
from dataset.jsondataset import batch_to_device
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.dist import get_rank
from utils.scheduler import create_scheduler
from utils.dataloader import create_dataloader
from utils.misc import AverageMeter, ProgressMeter, sec_2_hms, save_config
from utils.optimizer import get_trainable_params, count_params, update_ema
from utils.model import create_model, load_ckpt, create_ema, create_grounding_tokenizer
from utils.checkpoint import create_expt_folder_with_auto_resuming, ImageCaptionSaver, load_autoresume_ckpt, save_ckpt, save_ckpt_and_result
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
class Trainer:
def __init__(self, config):
self.config = config
self.device = torch.device("cuda")
# create output folder
self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
self.config_dict = save_config(config, self.name) if get_rank() == 0 else None
# create model and diffusion
self.model, self.autoencoder, self.text_encoder, self.diffusion, self.text_model, self.text_processor = create_model(config, self.device)
# load pretrained model
original_params_names = load_ckpt(config, self.model, self.autoencoder, self.text_encoder, self.diffusion)
# create optimizer
params = get_trainable_params(self.model, original_params_names)
self.opt = torch.optim.AdamW(params, lr=config.base_learning_rate, weight_decay=config.weight_decay)
count_params(params)
# create EMA model
self.ema, self.ema_params, self.master_params = create_ema(self.model, config.enable_ema)
# create scheduler
self.scheduler = create_scheduler(config, self.opt)
# create dataloader
self.dataset_train, self.loader_train = create_dataloader(config)
# load from autoresuming ckpt
self.starting_iter = load_autoresume_ckpt(checkpoint, config, self.model, self.ema, self.opt, self.scheduler)
# create grounding inputs tokenizer
self.grounding_tokenizer_input = create_grounding_tokenizer(config, self.model)
self.image_caption_saver = ImageCaptionSaver(self.name) if get_rank() == 0 else None
if config.distributed:
# http://www.idris.fr/eng/jean-zay/gpu/jean-zay-gpu-torch-multi-eng.html
self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )
def train_one_epoch(self, epoch, total_epoch):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
progress = ProgressMeter(
len(self.loader_train),
[batch_time, data_time, losses],
prefix="Epoch: [{}|{}]".format(epoch+1, total_epoch))
end = time.time()
# Creates a GradScaler once at the beginning of training.
scaler = torch.cuda.amp.GradScaler()
self.model.train()
for iter_idx, batch in enumerate(self.loader_train):
# measure data loading time
data_time.update(time.time() - end)
self.opt.zero_grad(set_to_none=True)
batch_to_device(batch, self.device)
# forward
loss = self.run_one_step(batch)
if not torch.isnan(loss):
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
# Backward passes under autocast are not recommended.
# Backward ops run in the same dtype autocast chose for corresponding forward ops.
scaler.scale(loss).backward()
# scaler.step() first unscales the gradients of the optimizer's assigned params.
# If these gradients do not contain infs or NaNs, optimizer.step() is then called,
# otherwise, optimizer.step() is skipped.
scaler.step(self.opt)
# Updates the scale for next iteration.
scaler.update()
# update scheduler
self.scheduler.step()
# update ema model
if self.config.enable_ema:
update_ema(self.ema_params, self.master_params, self.config.ema_rate)
# record loss
losses.update(loss.item())
if (get_rank() == 0):
if (iter_idx % 10 == 0):
self.log_loss()
else:
print("nan loss encountered, skipping this batch")
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print progress
print_freq = 10
if iter_idx % print_freq == 0:
secs = batch_time.avg * (self.config.total_iters - self.iter_idx)
progress.display(iter_idx, lr=self.opt.param_groups[0]['lr'], remaining_time=sec_2_hms(int(secs)))
self.iter_idx += 1
# save ckpt as checkpoint_latest.pth every 2000 iters
if self.iter_idx % 2000 == 0:
save_ckpt(self.config, self.model, self.text_encoder, self.autoencoder, self.opt, self.scheduler, self.config_dict, self.diffusion, self.ema, self.iter_idx, self.name)
# save ckpt and results every save_every_iters iters
if self.iter_idx % self.config.save_every_iters == 0:
save_ckpt_and_result(self.config, self.model, self.text_encoder, self.autoencoder, self.opt, self.scheduler, self.config_dict, self.diffusion, self.ema, self.iter_idx, self.loader_train, self.dataset_train, self.grounding_tokenizer_input, self.image_caption_saver, self.name, self.device)
def start_training(self):
self.config.total_iters = self.config.total_epochs * len(self.loader_train)
self.iter_idx = self.starting_iter
start_epoch = self.starting_iter // len(self.loader_train)
# training loop
for epoch in range(start_epoch, self.config.total_epochs):
if self.config.distributed:
self.loader_train.sampler.set_epoch(epoch)
self.train_one_epoch(epoch, self.config.total_epochs)
# save the final ckpt and result
if get_rank() == 0:
save_ckpt_and_result(self.config, self.model, self.text_encoder, self.autoencoder, self.opt, self.scheduler, self.config_dict, self.diffusion, self.ema, self.iter_idx, self.loader_train, self.dataset_train, self.grounding_tokenizer_input, self.image_caption_saver, self.name, self.device)
print("Model training is completed!!!")
@torch.no_grad()
def get_input(self, batch):
z = self.autoencoder.encode( batch["image"] )
noise = torch.randn_like(z)
context = self.text_encoder.encode( batch["caption"] )
_t = torch.rand(z.shape[0]).to(z.device)
t = (torch.pow(_t, 1) * 1000 ).long()
t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
return z, noise, t, context
def run_one_step(self, batch):
x_start, noise, t, context = self.get_input(batch)
x_noisy = self.diffusion.q_sample(x_start=x_start, t=t, noise=noise)
grounding_input = self.grounding_tokenizer_input.prepare(batch, return_att_masks=self.config.use_masked_att)
input = dict(x=x_noisy,
timesteps=t,
context=context,
grounding_input=grounding_input)
# with torch.cuda.amp.autocast(dtype=torch.bfloat16):
if self.config.fp32:
model_output = self.model(input) # model output: epsilon_t
target = noise
loss = torch.nn.functional.mse_loss(model_output, target)
else:
with torch.cuda.amp.autocast():
model_output = self.model(input)
target = noise
loss = torch.nn.functional.mse_loss(model_output, target)
self.loss_dict = {"loss": loss.item()}
return loss
def log_loss(self):
for k, v in self.loss_dict.items():
self.writer.add_scalar( k, v, self.iter_idx+1 )