We transfer our training pseudo labels to tsv format for faster dataloading. Please set the environment variable
export TRAIN_DATASETS=path_to_your_tsv_directory
The structure and file names of the tsv directory should follow
$TRAIN_DATASETS/
SAM-1.tsv
SAM-1.lineidx
SAM-2.tsv
SAM-2.lineidx
......
SAM-N.tsv
SAM-N.lineidx
Please refer to Semantic-SAM for a detailed script to transform json format data to tsv format data
By default we support 7 evaluation datasets for whole-image-segmentation evaluation: SA-1B, COCO, LVIS, ADE20K, EntitySeg, PartImagenet, and PACO. Please set the root directory environment variable first
export DETECTRON2_DATASETS=path_to_your_root_evaluation_directory
and change the test dataset name in config file
cfg.DATASETS.TEST: ("unsam_{sa1b, ade20k, entity, paco, partimagenet, coco, lvis}_val")
The structure and file names of the tsv directory should follow
$DETECTRON2_DATASETS/
sa1b/
images/
annotations/
sa1b_val.json
ade/
images/
annotations/
ade_val.json
entity/
images/
annotations/
entityseg_val.json
paco/
images/
annotations/
paco_val.json
partimagenet/
images/
annotations/
partimagenet_val.json
coco/
val2017/
annotations/
instances_val2017.json
lvis/
images/
annotations/
lvis_v1_val.json
Since ade20k, entity, partimagenet don't have standard image id format, please name each image as {image_id}.jpg. You can adjust them in whole_image_segmentation/data/build.py/get_test_detection_datasets
We support COCO evaluation for promptable segmentation. Please set the root directory environment variable first
export DETECTRON2_DATASETS=path_to_your_root_evaluation_directory
and refer to MaskDINO to prepare files under the evaluation directory