forked from FFmpeg/FFmpeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvf_deshake_opencl.c
2167 lines (1839 loc) · 70.1 KB
/
vf_deshake_opencl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
* Copyright (C) 2009, Willow Garage Inc., all rights reserved.
* Copyright (C) 2013, OpenCV Foundation, all rights reserved.
* Third party copyrights are property of their respective owners.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistribution's of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistribution's in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * The name of the copyright holders may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the Intel Corporation or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages
* (including, but not limited to, procurement of substitute goods or services;
* loss of use, data, or profits; or business interruption) however caused
* and on any theory of liability, whether in contract, strict liability,
* or tort (including negligence or otherwise) arising in any way out of
* the use of this software, even if advised of the possibility of such damage.
*/
#include <float.h>
#include <libavutil/lfg.h>
#include "libavutil/opt.h"
#include "libavutil/mem.h"
#include "libavutil/fifo.h"
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "libavutil/pixdesc.h"
#include "libavutil/pixfmt.h"
#include "avfilter.h"
#include "framequeue.h"
#include "filters.h"
#include "transform.h"
#include "opencl.h"
#include "opencl_source.h"
#include "video.h"
/*
This filter matches feature points between frames (dealing with outliers) and then
uses the matches to estimate an affine transform between frames. This transform is
decomposed into various values (translation, scale, rotation) and the values are
summed relative to the start of the video to obtain on absolute camera position
for each frame. This "camera path" is then smoothed via a gaussian filter, resulting
in a new path that is turned back into an affine transform and applied to each
frame to render it.
High-level overview:
All of the work to extract motion data from frames occurs in queue_frame. Motion data
is buffered in a smoothing window, so queue_frame simply computes the absolute camera
positions and places them in ringbuffers.
filter_frame is responsible for looking at the absolute camera positions currently
in the ringbuffers, applying the gaussian filter, and then transforming the frames.
*/
// Number of bits for BRIEF descriptors
#define BREIFN 512
// Size of the patch from which a BRIEF descriptor is extracted
// This is the size used in OpenCV
#define BRIEF_PATCH_SIZE 31
#define BRIEF_PATCH_SIZE_HALF (BRIEF_PATCH_SIZE / 2)
#define MATCHES_CONTIG_SIZE 2000
#define ROUNDED_UP_DIV(a, b) ((a + (b - 1)) / b)
typedef struct PointPair {
// Previous frame
cl_float2 p1;
// Current frame
cl_float2 p2;
} PointPair;
typedef struct MotionVector {
PointPair p;
// Used to mark vectors as potential outliers
cl_int should_consider;
} MotionVector;
// Denotes the indices for the different types of motion in the ringbuffers array
enum RingbufferIndices {
RingbufX,
RingbufY,
RingbufRot,
RingbufScaleX,
RingbufScaleY,
// Should always be last
RingbufCount
};
// Struct that holds data for drawing point match debug data
typedef struct DebugMatches {
MotionVector *matches;
// The points used to calculate the affine transform for a frame
MotionVector model_matches[3];
int num_matches;
// For cases where we couldn't calculate a model
int num_model_matches;
} DebugMatches;
// Groups together the ringbuffers that store absolute distortion / position values
// for each frame
typedef struct AbsoluteFrameMotion {
// Array with the various ringbuffers, indexed via the RingbufferIndices enum
AVFifo *ringbuffers[RingbufCount];
// Offset to get to the current frame being processed
// (not in bytes)
int curr_frame_offset;
// Keeps track of where the start and end of contiguous motion data is (to
// deal with cases where no motion data is found between two frames)
int data_start_offset;
int data_end_offset;
AVFifo *debug_matches;
} AbsoluteFrameMotion;
// Takes care of freeing the arrays within the DebugMatches inside of the
// debug_matches ringbuffer and then freeing the buffer itself.
static void free_debug_matches(AbsoluteFrameMotion *afm) {
DebugMatches dm;
if (!afm->debug_matches) {
return;
}
while (av_fifo_read(afm->debug_matches, &dm, 1) >= 0)
av_freep(&dm.matches);
av_fifo_freep2(&afm->debug_matches);
}
// Stores the translation, scale, rotation, and skew deltas between two frames
typedef struct FrameDelta {
cl_float2 translation;
float rotation;
cl_float2 scale;
cl_float2 skew;
} FrameDelta;
typedef struct SimilarityMatrix {
// The 2x3 similarity matrix
double matrix[6];
} SimilarityMatrix;
typedef struct CropInfo {
// The top left corner of the bounding box for the crop
cl_float2 top_left;
// The bottom right corner of the bounding box for the crop
cl_float2 bottom_right;
} CropInfo;
// Returned from function that determines start and end values for iteration
// around the current frame in a ringbuffer
typedef struct IterIndices {
int start;
int end;
} IterIndices;
typedef struct DeshakeOpenCLContext {
OpenCLFilterContext ocf;
// Whether or not the above `OpenCLFilterContext` has been initialized
int initialized;
// These variables are used in the activate callback
int64_t duration;
int eof;
// State for random number generation
AVLFG alfg;
// FIFO frame queue used to buffer future frames for processing
FFFrameQueue fq;
// Ringbuffers for frame positions
AbsoluteFrameMotion abs_motion;
// The number of frames' motion to consider before and after the frame we are
// smoothing
int smooth_window;
// The number of the frame we are currently processing
int curr_frame;
// Stores a 1d array of normalised gaussian kernel values for convolution
float *gauss_kernel;
// Buffer for error values used in RANSAC code
float *ransac_err;
// Information regarding how to crop the smoothed luminance (or RGB) planes
CropInfo crop_y;
// Information regarding how to crop the smoothed chroma planes
CropInfo crop_uv;
// Whether or not we are processing YUV input (as oppposed to RGB)
int is_yuv;
// The underlying format of the hardware surfaces
int sw_format;
// Buffer to copy `matches` into for the CPU to work with
MotionVector *matches_host;
MotionVector *matches_contig_host;
MotionVector *inliers;
cl_command_queue command_queue;
cl_kernel kernel_grayscale;
cl_kernel kernel_harris_response;
cl_kernel kernel_refine_features;
cl_kernel kernel_brief_descriptors;
cl_kernel kernel_match_descriptors;
cl_kernel kernel_transform;
cl_kernel kernel_crop_upscale;
// Stores a frame converted to grayscale
cl_mem grayscale;
// Stores the harris response for a frame (measure of "cornerness" for each pixel)
cl_mem harris_buf;
// Detected features after non-maximum suppression and sub-pixel refinement
cl_mem refined_features;
// Saved from the previous frame
cl_mem prev_refined_features;
// BRIEF sampling pattern that is randomly initialized
cl_mem brief_pattern;
// Feature point descriptors for the current frame
cl_mem descriptors;
// Feature point descriptors for the previous frame
cl_mem prev_descriptors;
// Vectors between points in current and previous frame
cl_mem matches;
cl_mem matches_contig;
// Holds the matrix to transform luminance (or RGB) with
cl_mem transform_y;
// Holds the matrix to transform chroma with
cl_mem transform_uv;
// Configurable options
int tripod_mode;
int debug_on;
int should_crop;
// Whether or not feature points should be refined at a sub-pixel level
cl_int refine_features;
// If the user sets a value other than the default, 0, this percentage is
// translated into a sigma value ranging from 0.5 to 40.0
float smooth_percent;
// This number is multiplied by the video frame rate to determine the size
// of the smooth window
float smooth_window_multiplier;
// Debug stuff
cl_kernel kernel_draw_debug_info;
cl_mem debug_matches;
cl_mem debug_model_matches;
// These store the total time spent executing the different kernels in nanoseconds
unsigned long long grayscale_time;
unsigned long long harris_response_time;
unsigned long long refine_features_time;
unsigned long long brief_descriptors_time;
unsigned long long match_descriptors_time;
unsigned long long transform_time;
unsigned long long crop_upscale_time;
// Time spent copying matched features from the device to the host
unsigned long long read_buf_time;
} DeshakeOpenCLContext;
// Returns a random uniformly-distributed number in [low, high]
static int rand_in(int low, int high, AVLFG *alfg) {
return (av_lfg_get(alfg) % (high - low)) + low;
}
// Returns the average execution time for an event given the total time and the
// number of frames processed.
static double averaged_event_time_ms(unsigned long long total_time, int num_frames) {
return (double)total_time / (double)num_frames / 1000000.0;
}
// The following code is loosely ported from OpenCV
// Estimates affine transform from 3 point pairs
// model is a 2x3 matrix:
// a b c
// d e f
static void run_estimate_kernel(const MotionVector *point_pairs, double *model)
{
// src points
double x1 = point_pairs[0].p.p1.s[0];
double y1 = point_pairs[0].p.p1.s[1];
double x2 = point_pairs[1].p.p1.s[0];
double y2 = point_pairs[1].p.p1.s[1];
double x3 = point_pairs[2].p.p1.s[0];
double y3 = point_pairs[2].p.p1.s[1];
// dest points
double X1 = point_pairs[0].p.p2.s[0];
double Y1 = point_pairs[0].p.p2.s[1];
double X2 = point_pairs[1].p.p2.s[0];
double Y2 = point_pairs[1].p.p2.s[1];
double X3 = point_pairs[2].p.p2.s[0];
double Y3 = point_pairs[2].p.p2.s[1];
double d = 1.0 / ( x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2) );
model[0] = d * ( X1*(y2-y3) + X2*(y3-y1) + X3*(y1-y2) );
model[1] = d * ( X1*(x3-x2) + X2*(x1-x3) + X3*(x2-x1) );
model[2] = d * ( X1*(x2*y3 - x3*y2) + X2*(x3*y1 - x1*y3) + X3*(x1*y2 - x2*y1) );
model[3] = d * ( Y1*(y2-y3) + Y2*(y3-y1) + Y3*(y1-y2) );
model[4] = d * ( Y1*(x3-x2) + Y2*(x1-x3) + Y3*(x2-x1) );
model[5] = d * ( Y1*(x2*y3 - x3*y2) + Y2*(x3*y1 - x1*y3) + Y3*(x1*y2 - x2*y1) );
}
// Checks that the 3 points in the given array are not collinear
static int points_not_collinear(const cl_float2 **points)
{
int j, k, i = 2;
for (j = 0; j < i; j++) {
double dx1 = points[j]->s[0] - points[i]->s[0];
double dy1 = points[j]->s[1] - points[i]->s[1];
for (k = 0; k < j; k++) {
double dx2 = points[k]->s[0] - points[i]->s[0];
double dy2 = points[k]->s[1] - points[i]->s[1];
// Assuming a 3840 x 2160 video with a point at (0, 0) and one at
// (3839, 2159), this prevents a third point from being within roughly
// 0.5 of a pixel of the line connecting the two on both axes
if (fabs(dx2*dy1 - dy2*dx1) <= 1.0) {
return 0;
}
}
}
return 1;
}
// Checks a subset of 3 point pairs to make sure that the points are not collinear
// and not too close to each other
static int check_subset(const MotionVector *pairs_subset)
{
const cl_float2 *prev_points[] = {
&pairs_subset[0].p.p1,
&pairs_subset[1].p.p1,
&pairs_subset[2].p.p1
};
const cl_float2 *curr_points[] = {
&pairs_subset[0].p.p2,
&pairs_subset[1].p.p2,
&pairs_subset[2].p.p2
};
return points_not_collinear(prev_points) && points_not_collinear(curr_points);
}
// Selects a random subset of 3 points from point_pairs and places them in pairs_subset
static int get_subset(
AVLFG *alfg,
const MotionVector *point_pairs,
const int num_point_pairs,
MotionVector *pairs_subset,
int max_attempts
) {
int idx[3];
int i = 0, j, iters = 0;
for (; iters < max_attempts; iters++) {
for (i = 0; i < 3 && iters < max_attempts;) {
int idx_i = 0;
for (;;) {
idx_i = idx[i] = rand_in(0, num_point_pairs, alfg);
for (j = 0; j < i; j++) {
if (idx_i == idx[j]) {
break;
}
}
if (j == i) {
break;
}
}
pairs_subset[i] = point_pairs[idx[i]];
i++;
}
if (i == 3 && !check_subset(pairs_subset)) {
continue;
}
break;
}
return i == 3 && iters < max_attempts;
}
// Computes the error for each of the given points based on the given model.
static void compute_error(
const MotionVector *point_pairs,
const int num_point_pairs,
const double *model,
float *err
) {
double F0 = model[0], F1 = model[1], F2 = model[2];
double F3 = model[3], F4 = model[4], F5 = model[5];
for (int i = 0; i < num_point_pairs; i++) {
const cl_float2 *f = &point_pairs[i].p.p1;
const cl_float2 *t = &point_pairs[i].p.p2;
double a = F0*f->s[0] + F1*f->s[1] + F2 - t->s[0];
double b = F3*f->s[0] + F4*f->s[1] + F5 - t->s[1];
err[i] = a*a + b*b;
}
}
// Determines which of the given point matches are inliers for the given model
// based on the specified threshold.
//
// err must be an array of num_point_pairs length
static int find_inliers(
MotionVector *point_pairs,
const int num_point_pairs,
const double *model,
float *err,
double thresh
) {
float t = (float)(thresh * thresh);
int i, n = num_point_pairs, num_inliers = 0;
compute_error(point_pairs, num_point_pairs, model, err);
for (i = 0; i < n; i++) {
if (err[i] <= t) {
// This is an inlier
point_pairs[i].should_consider = 1;
num_inliers += 1;
} else {
point_pairs[i].should_consider = 0;
}
}
return num_inliers;
}
// Determines the number of iterations required to achieve the desired confidence level.
//
// The equation used to determine the number of iterations to do is:
// 1 - confidence = (1 - inlier_probability^num_points)^num_iters
//
// Solving for num_iters:
//
// num_iters = log(1 - confidence) / log(1 - inlier_probability^num_points)
//
// A more in-depth explanation can be found at https://en.wikipedia.org/wiki/Random_sample_consensus
// under the 'Parameters' heading
static int ransac_update_num_iters(double confidence, double num_outliers, int max_iters)
{
double num, denom;
confidence = av_clipd(confidence, 0.0, 1.0);
num_outliers = av_clipd(num_outliers, 0.0, 1.0);
// avoid inf's & nan's
num = FFMAX(1.0 - confidence, DBL_MIN);
denom = 1.0 - pow(1.0 - num_outliers, 3);
if (denom < DBL_MIN) {
return 0;
}
num = log(num);
denom = log(denom);
return denom >= 0 || -num >= max_iters * (-denom) ? max_iters : (int)round(num / denom);
}
// Estimates an affine transform between the given pairs of points using RANdom
// SAmple Consensus
static int estimate_affine_2d(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *point_pairs,
DebugMatches *debug_matches,
const int num_point_pairs,
double *model_out,
const double threshold,
const int max_iters,
const double confidence
) {
int result = 0;
double best_model[6], model[6];
MotionVector pairs_subset[3], best_pairs[3];
int iter, niters = FFMAX(max_iters, 1);
int good_count, max_good_count = 0;
// We need at least 3 points to build a model from
if (num_point_pairs < 3) {
return 0;
} else if (num_point_pairs == 3) {
// There are only 3 points, so RANSAC doesn't apply here
run_estimate_kernel(point_pairs, model_out);
for (int i = 0; i < 3; ++i) {
point_pairs[i].should_consider = 1;
}
return 1;
}
for (iter = 0; iter < niters; ++iter) {
int found = get_subset(&deshake_ctx->alfg, point_pairs, num_point_pairs, pairs_subset, 10000);
if (!found) {
if (iter == 0) {
return 0;
}
break;
}
run_estimate_kernel(pairs_subset, model);
good_count = find_inliers(point_pairs, num_point_pairs, model, deshake_ctx->ransac_err, threshold);
if (good_count > FFMAX(max_good_count, 2)) {
for (int mi = 0; mi < 6; ++mi) {
best_model[mi] = model[mi];
}
for (int pi = 0; pi < 3; pi++) {
best_pairs[pi] = pairs_subset[pi];
}
max_good_count = good_count;
niters = ransac_update_num_iters(
confidence,
(double)(num_point_pairs - good_count) / num_point_pairs,
niters
);
}
}
if (max_good_count > 0) {
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = best_model[mi];
}
for (int pi = 0; pi < 3; ++pi) {
debug_matches->model_matches[pi] = best_pairs[pi];
}
debug_matches->num_model_matches = 3;
// Find the inliers again for the best model for debugging
find_inliers(point_pairs, num_point_pairs, best_model, deshake_ctx->ransac_err, threshold);
result = 1;
}
return result;
}
// "Wiggles" the first point in best_pairs around a tiny bit in order to decrease the
// total error
static void optimize_model(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *best_pairs,
MotionVector *inliers,
const int num_inliers,
float best_err,
double *model_out
) {
float move_x_val = 0.01;
float move_y_val = 0.01;
int move_x = 1;
float old_move_x_val = 0;
double model[6];
int last_changed = 0;
for (int iters = 0; iters < 200; iters++) {
float total_err = 0;
if (move_x) {
best_pairs[0].p.p2.s[0] += move_x_val;
} else {
best_pairs[0].p.p2.s[0] += move_y_val;
}
run_estimate_kernel(best_pairs, model);
compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
for (int j = 0; j < num_inliers; j++) {
total_err += deshake_ctx->ransac_err[j];
}
if (total_err < best_err) {
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = model[mi];
}
best_err = total_err;
last_changed = iters;
} else {
// Undo the change
if (move_x) {
best_pairs[0].p.p2.s[0] -= move_x_val;
} else {
best_pairs[0].p.p2.s[0] -= move_y_val;
}
if (iters - last_changed > 4) {
// We've already improved the model as much as we can
break;
}
old_move_x_val = move_x_val;
if (move_x) {
move_x_val *= -1;
} else {
move_y_val *= -1;
}
if (old_move_x_val < 0) {
move_x = 0;
} else {
move_x = 1;
}
}
}
}
// Uses a process similar to that of RANSAC to find a transform that minimizes
// the total error for a set of point matches determined to be inliers
//
// (Pick random subsets, compute model, find total error, iterate until error
// is minimized.)
static int minimize_error(
DeshakeOpenCLContext *deshake_ctx,
MotionVector *inliers,
DebugMatches *debug_matches,
const int num_inliers,
double *model_out,
const int max_iters
) {
int result = 0;
float best_err = FLT_MAX;
double best_model[6], model[6];
MotionVector pairs_subset[3], best_pairs[3];
for (int i = 0; i < max_iters; i++) {
float total_err = 0;
int found = get_subset(&deshake_ctx->alfg, inliers, num_inliers, pairs_subset, 10000);
if (!found) {
if (i == 0) {
return 0;
}
break;
}
run_estimate_kernel(pairs_subset, model);
compute_error(inliers, num_inliers, model, deshake_ctx->ransac_err);
for (int j = 0; j < num_inliers; j++) {
total_err += deshake_ctx->ransac_err[j];
}
if (i == 0 || total_err < best_err) {
for (int mi = 0; mi < 6; ++mi) {
best_model[mi] = model[mi];
}
for (int pi = 0; pi < 3; pi++) {
best_pairs[pi] = pairs_subset[pi];
}
best_err = total_err;
}
}
for (int mi = 0; mi < 6; ++mi) {
model_out[mi] = best_model[mi];
}
for (int pi = 0; pi < 3; ++pi) {
debug_matches->model_matches[pi] = best_pairs[pi];
}
debug_matches->num_model_matches = 3;
result = 1;
optimize_model(deshake_ctx, best_pairs, inliers, num_inliers, best_err, model_out);
return result;
}
// End code from OpenCV
// Decomposes a similarity matrix into translation, rotation, scale, and skew
//
// See http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
static FrameDelta decompose_transform(double *model)
{
FrameDelta ret;
double a = model[0];
double c = model[1];
double e = model[2];
double b = model[3];
double d = model[4];
double f = model[5];
double delta = a * d - b * c;
memset(&ret, 0, sizeof(ret));
ret.translation.s[0] = e;
ret.translation.s[1] = f;
// This is the QR method
if (a != 0 || b != 0) {
double r = hypot(a, b);
ret.rotation = FFSIGN(b) * acos(a / r);
ret.scale.s[0] = r;
ret.scale.s[1] = delta / r;
ret.skew.s[0] = atan((a * c + b * d) / (r * r));
ret.skew.s[1] = 0;
} else if (c != 0 || d != 0) {
double s = sqrt(c * c + d * d);
ret.rotation = M_PI / 2 - FFSIGN(d) * acos(-c / s);
ret.scale.s[0] = delta / s;
ret.scale.s[1] = s;
ret.skew.s[0] = 0;
ret.skew.s[1] = atan((a * c + b * d) / (s * s));
} // otherwise there is only translation
return ret;
}
// Move valid vectors from the 2d buffer into a 1d buffer where they are contiguous
static int make_vectors_contig(
DeshakeOpenCLContext *deshake_ctx,
int size_y,
int size_x
) {
int num_vectors = 0;
for (int i = 0; i < size_y; ++i) {
for (int j = 0; j < size_x; ++j) {
MotionVector v = deshake_ctx->matches_host[j + i * size_x];
if (v.should_consider) {
deshake_ctx->matches_contig_host[num_vectors] = v;
++num_vectors;
}
// Make sure we do not exceed the amount of space we allocated for these vectors
if (num_vectors == MATCHES_CONTIG_SIZE - 1) {
return num_vectors;
}
}
}
return num_vectors;
}
// Returns the gaussian kernel value for the given x coordinate and sigma value
static float gaussian_for(int x, float sigma) {
return 1.0f / expf(((float)x * (float)x) / (2.0f * sigma * sigma));
}
// Makes a normalized gaussian kernel of the given length for the given sigma
// and places it in gauss_kernel
static void make_gauss_kernel(float *gauss_kernel, float length, float sigma)
{
float gauss_sum = 0;
int window_half = length / 2;
for (int i = 0; i < length; ++i) {
float val = gaussian_for(i - window_half, sigma);
gauss_sum += val;
gauss_kernel[i] = val;
}
// Normalize the gaussian values
for (int i = 0; i < length; ++i) {
gauss_kernel[i] /= gauss_sum;
}
}
// Returns indices to start and end iteration at in order to iterate over a window
// of length size centered at the current frame in a ringbuffer
//
// Always returns numbers that result in a window of length size, even if that
// means specifying negative indices or indices past the end of the values in the
// ringbuffers. Make sure you clip indices appropriately within your loop.
static IterIndices start_end_for(DeshakeOpenCLContext *deshake_ctx, int length) {
IterIndices indices;
indices.start = deshake_ctx->abs_motion.curr_frame_offset - (length / 2);
indices.end = deshake_ctx->abs_motion.curr_frame_offset + (length / 2) + (length % 2);
return indices;
}
// Sets val to the value in the given ringbuffer at the given offset, taking care of
// clipping the offset into the appropriate range
static void ringbuf_float_at(
DeshakeOpenCLContext *deshake_ctx,
AVFifo *values,
float *val,
int offset
) {
int clip_start, clip_end, offset_clipped;
if (deshake_ctx->abs_motion.data_end_offset != -1) {
clip_end = deshake_ctx->abs_motion.data_end_offset;
} else {
// This expression represents the last valid index in the buffer,
// which we use repeatedly at the end of the video.
clip_end = deshake_ctx->smooth_window - av_fifo_can_write(values) - 1;
}
if (deshake_ctx->abs_motion.data_start_offset != -1) {
clip_start = deshake_ctx->abs_motion.data_start_offset;
} else {
// Negative indices will occur at the start of the video, and we want
// them to be clipped to 0 in order to repeatedly use the position of
// the first frame.
clip_start = 0;
}
offset_clipped = av_clip(
offset,
clip_start,
clip_end
);
av_fifo_peek(values, val, 1, offset_clipped);
}
// Returns smoothed current frame value of the given buffer of floats based on the
// given Gaussian kernel and its length (also the window length, centered around the
// current frame) and the "maximum value" of the motion.
//
// This "maximum value" should be the width / height of the image in the case of
// translation and an empirically chosen constant for rotation / scale.
//
// The sigma chosen to generate the final gaussian kernel with used to smooth the
// camera path is either hardcoded (set by user, deshake_ctx->smooth_percent) or
// adaptively chosen.
static float smooth(
DeshakeOpenCLContext *deshake_ctx,
float *gauss_kernel,
int length,
float max_val,
AVFifo *values
) {
float new_large_s = 0, new_small_s = 0, new_best = 0, old, diff_between,
percent_of_max, inverted_percent;
IterIndices indices = start_end_for(deshake_ctx, length);
float large_sigma = 40.0f;
float small_sigma = 2.0f;
float best_sigma;
if (deshake_ctx->smooth_percent) {
best_sigma = (large_sigma - 0.5f) * deshake_ctx->smooth_percent + 0.5f;
} else {
// Strategy to adaptively smooth trajectory:
//
// 1. Smooth path with large and small sigma values
// 2. Take the absolute value of the difference between them
// 3. Get a percentage by putting the difference over the "max value"
// 4, Invert the percentage
// 5. Calculate a new sigma value weighted towards the larger sigma value
// 6. Determine final smoothed trajectory value using that sigma
make_gauss_kernel(gauss_kernel, length, large_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_large_s += old * gauss_kernel[j];
}
make_gauss_kernel(gauss_kernel, length, small_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_small_s += old * gauss_kernel[j];
}
diff_between = fabsf(new_large_s - new_small_s);
percent_of_max = diff_between / max_val;
inverted_percent = 1 - percent_of_max;
best_sigma = large_sigma * powf(inverted_percent, 40);
}
make_gauss_kernel(gauss_kernel, length, best_sigma);
for (int i = indices.start, j = 0; i < indices.end; ++i, ++j) {
ringbuf_float_at(deshake_ctx, values, &old, i);
new_best += old * gauss_kernel[j];
}
return new_best;
}
// Returns the position of the given point after the transform is applied
static cl_float2 transformed_point(float x, float y, float *transform) {
cl_float2 ret;
ret.s[0] = x * transform[0] + y * transform[1] + transform[2];
ret.s[1] = x * transform[3] + y * transform[4] + transform[5];
return ret;
}
// Creates an affine transform that scales from the center of a frame
static void transform_center_scale(
float x_shift,
float y_shift,
float angle,
float scale_x,
float scale_y,
float center_w,
float center_h,
float *matrix
) {
cl_float2 center_s;
float center_s_w, center_s_h;
ff_get_matrix(
0,
0,
0,
scale_x,
scale_y,
matrix
);
center_s = transformed_point(center_w, center_h, matrix);
center_s_w = center_w - center_s.s[0];
center_s_h = center_h - center_s.s[1];
ff_get_matrix(
x_shift + center_s_w,
y_shift + center_s_h,
angle,
scale_x,
scale_y,
matrix
);
}
// Determines the crop necessary to eliminate black borders from a smoothed frame
// and updates target crop accordingly
static void update_needed_crop(
CropInfo* crop,
float *transform,
float frame_width,
float frame_height
) {
float new_width, new_height, adjusted_width, adjusted_height, adjusted_x, adjusted_y;
cl_float2 top_left = transformed_point(0, 0, transform);
cl_float2 top_right = transformed_point(frame_width, 0, transform);
cl_float2 bottom_left = transformed_point(0, frame_height, transform);
cl_float2 bottom_right = transformed_point(frame_width, frame_height, transform);