-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA2C_models.py
68 lines (47 loc) · 2.15 KB
/
A2C_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
from torch import nn
import torch.nn.functional as F
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class ActorCriticContinuous(nn.Module):
"""
Actor-Critic for continuous action spaces. The network returns a state_value (critic) and
action mean and action standarddeviation (actor). The action is the sampled from a normal
distribution with mean and std given by the actor.
"""
def __init__(self, action_dim, state_dim, hidden_dim):
super(ActorCriticContinuous, self).__init__()
self.fc_1 = nn.Linear(state_dim, hidden_dim)
self.fc_2 = nn.Linear(hidden_dim, int(hidden_dim/2))
# critic head
self.critic_head = nn.Linear(int(hidden_dim/2), 1)
# actor head
self.actor_head_mean = nn.Linear(int(hidden_dim/2), action_dim)
self.actor_head_sigma = nn.Linear(int(hidden_dim / 2), action_dim)
def forward(self, inp):
x = F.leaky_relu(self.fc_1(inp))
x = F.leaky_relu(self.fc_2(x))
# how good is the current state?
state_value = self.critic_head(x)
action_mean = (self.actor_head_mean(x))
action_sigma = F.softplus(self.actor_head_sigma(x) + 0.0001)
return action_mean, action_sigma, state_value
class ActorCriticDiscrete(nn.Module):
"""
Actor-Critic for discrete action spaces. The network returns a state_value (critic)and action probabilities (actor).
"""
def __init__(self, action_dim, state_dim, hidden_dim):
super(ActorCriticDiscrete, self).__init__()
self.fc_1 = nn.Linear(state_dim, hidden_dim)
self.fc_2 = nn.Linear(hidden_dim, int(hidden_dim/2))
# critic head
self.critic_head = nn.Linear(int(hidden_dim/2), 1)
# actor head
self.actor_head = nn.Linear(int(hidden_dim/2), action_dim)
def forward(self, inp):
x = F.leaky_relu(self.fc_1(inp))
x = F.leaky_relu(self.fc_2(x))
# how good is the current state?
state_value = self.critic_head(x)
# actor's probability to take each action
action_prob = F.softmax(self.actor_head(x), dim=-1)
return action_prob, state_value