-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkinetic_he.pro
2047 lines (1995 loc) · 82.1 KB
/
kinetic_he.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
;+
; Kinetic_HE.pro
;
; This subroutine is part of the "KN1D" atomic and molecular neutral transport code.
;
; This subroutine solves a 1-D spatial, 2-D velocity kinetic neutral transport
; problem for atomic hydrogen (H) or deuterium by computing successive generations of
; charge exchange and elastic scattered neutrals. The routine handles electron-impact
; ionization, proton-atom charge exchange, radiative recombination, and elastic
; collisions with hydrogenic ions, neutral atoms, and molecules.
;
; The positive vx half of the atomic neutral distribution function is inputted at x(0)
; (with arbitrary normalization) and the desired flux of hydrogen atoms entering the slab,
; at x(0) is specified. Background profiles of plasma ions, (e.g., Ti(x), Te(x), n(x), vxi(x),...)
; molecular ions, (nHP(x), THP(x)), and molecular distribution function (fH) are inputted.
;
; Optionally, the hydrogen source velocity distribution function is also inputted.
; (The H source and fH2 distribution functions can be computed using procedure
; "Kinetic_H2.pro".) The code returns the atomic hydrogen distribution function, fH(vr,vx,x)
; for all vx, vr, and x of the specified vr,vx,x grid.
;
; Since the problem involves only the x spatial dimension, all distribution functions
; are assumed to have rotational symmetry about the vx axis. Consequently, the distributions
; only depend on x, vx and vr where vr =sqrt(vy^2+vz^2)
;
; History:
;
; B. LaBombard First coding based on Kinetic_Neutrals.pro 22-Dec-2000
;
; For more information, see write-up: "A 1-D Space, 2-D Velocity, Kinetic
; Neutral Transport Algorithm for Hydrogen Atoms in an Ionizing Plasma", B. LaBombard
;
; Note: Variable names contain characters to help designate species -
; atomic neutral (H), molecular neutral (H2), molecular ion (HP), proton (i) or (P)
;
;________________________________________________________________________________
pro Kinetic_HE,vx,vr,x,Tnorm,mu,Ti,Te,n,vxi,fHBC,GammaxHBC,PipeDia,fH2,fSH,nHP,THP,$
fH,nH,GammaxH,VxH,pH,TH,qxH,qxH_total,NetHSource,Sion,QH,RxH,QH_total,AlbedoH,WallH,$
truncate=truncate,Simple_CX=Simple_CX,Max_Gen=Max_Gen,$
No_Johnson_Hinnov=No_Johnson_Hinnov,No_Recomb=No_Recomb,$
H_H_EL=H_H_EL,H_P_EL=H_P_EL,H_H2_EL=_H_H2_EL,H_P_CX=H_P_CX,ni_correct=ni_correct,$
error=error,compute_errors=compute_errors,$
plot=plot,debug=debug,debrief=debrief,pause=pause,ihe=ihe
common Kinetic_H_Output,piH_xx,piH_yy,piH_zz,RxHCX,RxH2_H,RxP_H,RxW_H,EHCX,EH2_H,EP_H,EW_H,Epara_PerpH_H,SourceH,SRecomb
common Kinetic_H_Errors,Max_dx,vbar_error,mesh_error,moment_error,C_Error,CX_Error,H_H_error,$
qxH_total_error,QH_total_error
;
; Input:
; vx(*) - fltarr(nvx), normalized x velocity coordinate
; [negative values, positive values],
; monotonically increasing. Note: a nonuniform mesh can be used.
; Dimensional velocity (note: Vth is based on ATOM mass)
; is v = Vth * vx where Vth=sqrt(2 k Tnorm/(mH*mu))
; Note: nvx must be even and vx(*) symmetric about
; zero but not contain a zero element
; vr(*) - fltarr(nvr), normalized radial velocity coordinate
; [positive values], monotonically increasing. Note: a non-uniform mesh can be used.
; Dimensional velocity is v = Vth * vr where Vth=sqrt(2 k Tnorm/(mH*mu))
; Note: vr must not contain a zero element
; x(*) - fltarr(nx), spatial coordinate (meters),
; positive, monontonically increasing. Note: a non-uniform mesh can be used.
; Tnorm - Float, temperature corresponding to the thermal speed (see vx and vr above) (eV)
; mu - Float, 1=hydrogen, 2=deuterium
; Ti - fltarr(nx), Ion temperature profile (eV)
; Te - fltarr(nx), electron temperature profile (eV)
; n - fltarr(nx), electron density profile (m^-3)
; vxi - fltarr(nx), x-directed plasma ion and molecular ion flow profile (m s^-1)
; fHBC - fltarr(nvr,nvx), this is an input boundary condition
; specifying the shape of the neutral atom velocity distribution
; function at location x(0). Normalization is arbitrary.
; Only values with positive vx, fHBC(*,nvx/2:*) are used
; by the code.
; GammaxHBC - float, desired neutral atom flux density in the +Vx
; direction at location x(0) (m^-2 s^-1)
; fHBC is scaled to yield this flux density.
; PipeDia - fltarr(nx), effective pipe diameter (meters)
; This variable allows collisions with the 'side-walls' to be simulated.
; If this variable is undefined, then PipeDia set set to zero. Zero values
; of PipeDia are ignored (i.e., treated as an infinite diameter).
; fH2 - fltarr(nvr,nvx,nx), neutral molecule velocity distribution
; function. fH2 is normalized so that the molecular neutral density, nH2(k), is
; defined as the velocity space integration: nH2(k)=total(Vr2pidVr*(fH2(*,*,k)#dVx))
; If this variable is undefined, then it is set equal to zero and
; no molecule-atom collisions are included.
; NOTE: dVx is velocity space differential for Vx axis and Vr2pidVr = Vr*!pi*dVr
; with dVr being velocity space differential for Vr axis.
; fSH - fltarr(nvr,nvx,nx), atomic hydrogen source velocity distribution.
; fSH must be normalized so that the total atomic neutral
; source, SourceH(k), is defined as the velocity space integration:
; SourceH(k)=total(Vr2pidVr*(fSH(*,*,k)#dVx))
; fSH can be computed from IDL procedure Kinetic_H2.pro
; If this variable is undefined, then it is set equal to zero.
; nHP - fltarr(nx), molecular ion density profile (m^-3)
; If this parameter is undefined, then it is set equal to zero.
; nHP can be computed from IDL procedure Kinetic_H2.pro
; THP - fltarr(nx), molecular ion temperature profile (m^-3)
; If this parameter is undefined, then it is set equal to 3 eV at each grid point.
; THP can be computed from IDL procedure Kinetic_H2.pro
;
; Input & Output:
; fH - fltarr(nvr,nvx,nx), neutral atom velocity distribution
; function. 'Seed' values for this may be specified on input.
; If this parameter is undefined on input, then a zero 'seed' value will be used.
; The algorithm outputs a self-consistent fH.
; fH is normalized so that the neutral density, nH(k), is defined as
; the velocity space integration: nH(k)=total(Vr2pidVr*(fH(*,*,k)#dVx))
;
; Output:
; nH - fltarr(nx), neutral atom density profile (m^-3)
; GammaxH - fltarr(nx), neutral atom flux profile (# m^-2 s^-1)
; computed from GammaxH(k)=Vth*total(Vr2pidVr*(fH(*,*,k)#(Vx*dVx)))
; VxH - fltarr(nx), neutral atom velocity profile (m s^-1)
; computed from GammaxH/nH
;
; To aid in computing the some of the quantities below, the procedure internally
; defines the quantities:
; vr2vx2_ran(i,j,k)=vr(i)^2+(vx(j)-VxH(k))^2
; which is the magnitude of 'random v^2' at each mesh point
; vr2vx2(i,j,k)=vr(i)^2+vx(j)^2
; which is the magnitude of 'total v^2' at each mesh point
; q=1.602177D-19, mH=1.6726231D-27
; C(*,*,*) is the right hand side of the Boltzmann equation, evaluated
; using the computed neutral distribution function
;
; pH - fltarr(nx), neutral atom pressure (eV m^-2) computed from:
; pH(k)~vth2*total(Vr2pidVr*(vr2vx2_ran(*,*,k)*fH(*,*,k))#dVx))*(mu*mH)/(3*q)
; TH - fltarr(nx), neutral atom temperature profile (eV) computed from: TH=pH/nH
; qxH - fltarr(nx), neutral atom random heat flux profile (watts m^-2) computed from:
; qxH(k)~vth3*total(Vr2pidVr*((vr2vx2_ran(*,*,k)*fH(*,*,k))#(dVx*(vx-VxH(k)))))*0.5*(mu*mH)
; qxH_total - fltarr(nx), total neutral atom heat flux profile (watts m^-2)
; This is the total heat flux transported by the neutrals:
; qxH_total=(0.5*nH*(mu*mH)*VxH*VxH + 2.5*pH*q)*VxH + piH_xx*VxH + qxH
; NetHSource - fltarr(nx), net H0 source [H0 source - ionization sink - wall sink] (m^-3 s^-1) computed from
; NetHSource(k)=total(Vr2pidVr*(C(*,*,k)#dVx))
; Sion - fltarr(nx), H ionization rate (m^-3 s^-1)
; QH - fltarr(nx), rate of net thermal energy transfer into neutral atoms (watts m^-3) computed from
; QH(k)~vth2*total(Vr2pidVr*((vr2vx2_ran(*,*,k)*C(*,*,k))#dVx))*0.5*(mu*mH)
; RxH - fltarr(nx), rate of x momentum transfer to neutral atoms (=force, N m^-2).
; RxH(k)~Vth*total(Vr2pidVr*(C(*,*,k)#(dVx*(vx-VxH(k)))))*(mu*mH)
; QH_total - fltarr(nx), net rate of total energy transfer into neutral atoms
; = QH + RxH*VxH - 0.5*(mu*mH)*(Sloss-SourceH)*VxH*VxH (watts m^-3)
; AlbedoH - float, Ratio of atomic neutral particle flux with Vx < 0 divided by particle flux
; with Vx > 0 at x=x(0)
; (Note: For fSH non-zero, the flux with Vx < 0 will include
; contributions from molecular hydrogen sources within the 'slab'.
; In this case, this parameter does not return the true 'Albedo'.)
; WallH - fltarr(nx), atomic neutral sink rate arising from hitting the 'side walls' (m^-3 s^-1)
; Unlike the molecules in Kinetic_H2, wall collisions result in the destruction of atoms.
; This parameter can be used to specify a resulting source of molecular
; neutrals in Kinetic_H2. (molecular source = 2 times WallH)
;
; KEYWORDS:
; Output:
; error - Returns error status: 0=no error, solution returned
; 1=error, no solution returned
;
; COMMON BLOCK Kinetic_H_OUTPUT
; Output:
; piH_xx - fltarr(nx), xx element of stress tensor (eV m^-2) computed from:
; piH_xx(k)~vth2*total(Vr2pidVr*(fH(*,*,k)#(dVx*(vx-VxH(k))^2)))*(mu*mH)/q - pH
; piH_yy - fltarr(nx), yy element of stress tensor (eV m^-2) computed from:
; piH_yy(k)~vth2*total((Vr2pidVr*Vr^2)*(fH(*,*,k)#dVx))*(mu*mH)/q - pH
; piH_zz - fltarr(nx), zz element of stress tensor (eV m^-2) = piH_yy
; Note: cylindrical system relates r^2 = y^2 + z^2. All other stress tensor elements are zero.
;
; The following momentum and energy transfer rates are computed from charge-exchange collsions between species:
; RxHCX - fltarr(nx), rate of x momentum transfer from hydrogren ions to atoms (=force/vol, N m^-3).
; EHCX - fltarr(nx), rate of energy transfer from hydrogren ions to atoms (watts m^-3).
;
; The following momentum and energy transfer rates are computed from elastic collsions between species:
; RxH2_H - fltarr(nx), rate of x momentum transfer from neutral molecules to atoms (=force/vol, N m^-3).
; RxP_H - fltarr(nx), rate of x momentum transfer from hydrogen ions to neutral atoms (=force/vol, N m^-3).
; EH2_H - fltarr(nx), rate of energy transfer from neutral molecules to atoms (watts m^-3).
; EP_H - fltarr(nx), rate of energy transfer from hydrogen ions to neutral atoms (watts m^-3).
;
; The following momentum and energy transfer rates are computed from collisions with the 'side-walls'
; RxW_H - fltarr(nx), rate of x momentum transfer from wall to neutral atoms (=force/vol, N m^-3).
; EW_H - fltarr(nx), rate of energy transfer from wall to neutral atoms (watts m^-3).
;
; The following is the rate of parallel to perpendicular energy transfer computed from elastic collisions
; Epara_PerpH_H - fltarr(nx), rate of parallel to perp energy transfer within atomic hydrogen species (watts m^-3).
;
; Source/Sink info:
; SourceH - fltarr(nx), source rate of neutral atoms from H2 dissociation (from integral of inputted fSH) (m^-3 s^-1).
; SRecom - fltarr(nx), source rate of neutral atoms from recombination (m^-3 s^-1).
;
; KEYWORDS:
; Input:
; truncate - float, stop computation when the maximum
; increment of neutral density normalized to
; inputed neutral density is less than this
; value in a subsequent generation. Default value is 1.0e-4
;
; Simple_CX - if set, then use CX source option (B): Neutrals are born
; in velocity with a distribution proportional to the local
; ion distribution function. Simple_CX=1 is default.
;
; if not set, then use CX source option (A): The CX source
; neutral atom distribution function is computed by evaluating the
; the CX cross section for each combination of (vr,vx,vr',vx')
; and convolving it with the neutral atom distribution function.
; This option requires more CPU time and memory.
;
; Max_gen - integer, maximum number of collision generations to try including before giving up.
; Default is 50.
;
; No_Johnson_Hinnov - if set, then compute ionization and recombination rates
; directly from reaction rates published by Janev* for
; ground state hydrogen
;
; Ionization: e + H(1s) -> p + e
; Recombination: e + p -> H(1s) + hv
;
; *Janev, R.K., et al, "Elementary processes in hydrogen-helium plasmas",
; (Springer-Verlag, Berlin ; New York, 1987)
;
; Otherwise, compute ionization and recombination rates using
; results from the collisional-radiative model published by Johnson
; and Hinnov [L.C.Johnson and E. Hinnov, J. Quant. Spectrosc. Radiat.
; Transfer. vol. 13 pp.333-358]. This is the default.
; Note: charge exchange is always computed using the ground state reaction
; rates published by Janev:
;
; Charge Exchange: p + H(1s) -> H(1s) + p
;
; No_Recomb - if set, then DO NOT include recombination as a source of atomic neutrals
; in the algorithm
;
; H_H_EL - if set, then include H -> H elastic self collisions
; Note: if H_H_EL is set, then algorithm iterates fH until
; self consistent fH is achieved.
; H_P_CX - if set, then include H -> H(+) charge exchange collisions
; H_P_EL - if set, then include H -> H(+) elastic collisions
; H_H2_EL - if set, then include H -> H2 elastic collisions
; ni_correct - if set, then algorithm corrects hydrogen ion density
; according to quasineutrality: ni=ne-nHP. Otherwise, nHP is assumed to be small.
;
; Compute_Errors - if set, then return error estimates in common block Kinetic_H_ERRORS below
;
; plot - 0= no plots, 1=summary plots, 2=detail plots, 3=very detailed plots
; debug - 0= do not execute debug code, 1=summary debug, 2=detail debug, 3=very detailed debug
; debrief - 0= do not print, 1=print summary information, 2=print detailed information
; pause - if set, then pause between plots
;
; COMMON BLOCK Kinetic_H_ERRORS
;
; if COMPUTE_ERRORS keyword is set then the following is returned in common block Kinetic_H_ERRORS
;
; Max_dx - float(nx), Max_dx(k) for k=0:nx-2 returns maximum
; allowed x(k+1)-x(k) that avoids unphysical negative
; contributions to fH
; Vbar_error - float(nx), returns numerical error in computing
; the speed of ions averged over maxwellian distribution.
; The average speed should be:
; vbar_exact=2*Vth*sqrt(Ti(*)/Tnorm)/sqrt(!pi)
; Vbar_error returns: abs(vbar-vbar_exact)/vbar_exact
; where vbar is the numerically computed value.
; mesh_error - fltarr(nvr,nvx,nx), normalized error of solution
; based on substitution into Boltzmann equation.
; moment_error - fltarr(nx,m), normalized error of solution
; based on substitution into velocity space
; moments (v^m) of Boltzmann equation, m=[0,1,2,3,4]
; C_error - fltarr(nx), normalized error in charge exchange and elastic scattering collision
; operator. This is a measure of how well the charge exchange and
; elastic scattering portions of the collision operator
; conserve particles.
; CX_error - fltarr(nx), normalized particle conservation error in charge exchange collision operator.
; H_H_error - fltarr(nx,[0,1,2]) return normalized errors associated with
; particle [0], x-momentum [1], and total energy [2] convervation of the elastic self-collision operator
;
; qxH_total_error - fltarr(nx), normalized error estimate in computation of qxH_total
; QH_total_error - fltarr(nx), normalized error estimate in computation of QH_total
;
; History:
; 22-Dec-2000 - B. LaBombard - first coding.
; 11-Feb-2001 - B. LaBombard - added elastic collisions
;
;______________________________________________________________________
;-
prompt='Kinetic_H => '
;
common Kinetic_H_input,vx_s,vr_s,x_s,Tnorm_s,mu_s,Ti_s,Te_s,n_s,vxi_s,fHBC_s,GammaxHBC_s,PipeDia_s,fH2_s,fSH_s,nHP_s,THP_s,$
fH_s,Simple_CX_s,JH_s,Recomb_s,H_H_EL_s,H_P_EL_s,H_H2_EL_s,H_P_CX_s
common Kinetic_H_internal,vr2vx2,vr2vx_vxi2,fi_hat,ErelH_P,Ti_mu,ni,sigv,alpha_ion,v_v2,v_v,vr2_vx2,vx_vx,$
Vr2pidVrdVx,SIG_CX,SIG_H_H,SIG_H_H2,SIG_H_P,Alpha_CX,Alpha_H_H2,Alpha_H_P,MH_H_sum,Delta_nHs,Sn,Rec
common Kinetic_H_H2_Moments,nH2,VxH2,TH2
;
; Internal Debug switches
;
shifted_Maxwellian_debug=0
CI_Test=1
Do_Alpha_CX_Test=0
;
; Internal Tolerances
;
DeltaVx_tol=.01
Wpp_tol=.001
;
; Test input parameters
;
key_default,truncate,1.0e-4
key_default,Compute_Errors,0
key_default,plot,0
key_default,debug,0
key_default,pause,0
key_default,debrief,0
if debug gt 0 then plot=plot > 1
if debug gt 0 then debrief=debrief > 1
if debug gt 0 then pause=1
key_default,Simple_CX,1
key_default,Max_Gen,50
key_default,No_Johnson_Hinnov,0
JH=1 & if No_Johnson_Hinnov then JH=0
key_default,No_Recomb,0
Recomb=1 & if No_Recomb then Recomb=0
key_default,H_H_EL,0
key_default,H_P_EL,0
key_default,_H_H2_EL,0
key_default,H_P_CX,0
key_default,ni_correct,0
error=0
nvr=n_elements(vr)
nvx=n_elements(vx)
nx=n_elements(x)
vr=double(vr)
vx=double(vx)
x=double(x)
dx=x-shift(x,1) & dx=dx(1:*)
notpos=where(dx le 0.0,count)
if count gt 0 then begin & print,prompt+'x(*) must be increasing with index!' & error=1 & goto,return & endif
if (nvx mod 2) ne 0 then begin & print,prompt+'Number of elements in vx must be even!' & error=1 & goto,return & endif
if n_elements(Ti) ne nx then begin & print,prompt+'Number of elements in Ti and x do not agree!' & error=1 & goto,return & endif
if type_of(vxi) eq 0 then vxi=dblarr(nx)
if n_elements(vxi) ne nx then begin & print,prompt+'Number of elements in vxi and x do not agree!' & error=1 & goto,return & endif
if n_elements(Te) ne nx then begin & print,prompt+'Number of elements in Te and x do not agree!' & error=1 & goto,return & endif
if n_elements(n) ne nx then begin & print,prompt+'Number of elements in n and x do not agree!' & error=1 & goto,return & endif
if type_of(GammaxHBC) eq 0 then begin & print,prompt+'GammaxHBC is not defined!' & error=1 & goto,return & endif
if type_of(PipeDia) eq 0 then PipeDia=dblarr(nx)
if n_elements(PipeDia) ne nx then begin & print,prompt+'Number of elements in PipeDia and x do not agree!' & error=1 & goto,return & endif
if n_elements(fHBC(*,0)) ne nvr then begin & print,prompt+'Number of elements in fHBC(*,0) and vr do not agree!' & error=1 & goto,return & endif
if n_elements(fHBC(0,*)) ne nvx then begin & print,prompt+'Number of elements in fHBC(0,*) and vx do not agree!' & error=1 & goto,return & endif
if type_of(fH2) eq 0 then fH2=dblarr(nvr,nvx,nx)
if n_elements(fH2(*,0,0)) ne nvr then begin & print,prompt+'Number of elements in fH2(*,0,0) and vr do not agree!' & error=1 & goto,return & endif
if n_elements(fH2(0,*,0)) ne nvx then begin & print,prompt+'Number of elements in fH2(0,*,0) and vx do not agree!' & error=1 & goto,return & endif
if n_elements(fH2(0,0,*)) ne nx then begin & print,prompt+'Number of elements in fH2(0,0,*) and x do not agree!' & error=1 & goto,return & endif
if type_of(fSH) eq 0 then fSH=dblarr(nvr,nvx,nx)
if n_elements(fSH(*,0,0)) ne nvr then begin & print,prompt+'Number of elements in fSH(*,0,0) and vr do not agree!' & error=1 & goto,return & endif
if n_elements(fSH(0,*,0)) ne nvx then begin & print,prompt+'Number of elements in fSH(0,*,0) and vx do not agree!' & error=1 & goto,return & endif
if n_elements(fSH(0,0,*)) ne nx then begin & print,prompt+'Number of elements in fSH(0,0,*) and x do not agree!' & error=1 & goto,return & endif
if type_of(nHP) eq 0 then nHP=dblarr(nx)
if n_elements(nHP) ne nx then begin & print,prompt+'Number of elements in nHP and x do not agree!' & error=1 & goto,return & endif
if type_of(THP) eq 0 then THP=dblarr(nx)+1.0
if n_elements(THP) ne nx then begin & print,prompt+'Number of elements in THP and x do not agree!' & error=1 & goto,return & endif
if type_of(fH) eq 0 then fH=dblarr(nvr,nvx,nx)
if n_elements(fH(*,0,0)) ne nvr then begin & print,prompt+'Number of elements in fH(*,0,0) and vr do not agree!' & error=1 & goto,return & endif
if n_elements(fH(0,*,0)) ne nvx then begin & print,prompt+'Number of elements in fH(0,*,0) and vx do not agree!' & error=1 & goto,return & endif
if n_elements(fH(0,0,*)) ne nx then begin & print,prompt+'Number of elements in fH(0,0,*) and x do not agree!' & error=1 & goto,return & endif
if total(abs(vr)) le 0.0 then begin & print,prompt+'vr is all 0!' & error=1 & goto,return & endif
ii=where(vr le 0,count)
if count gt 0 then begin & print,prompt+'vr contains zero or negative element(s)!' & error=1 & goto,return & endif
if total(abs(vx)) le 0.0 then begin & print,prompt+'vx is all 0!' & error=1 & goto,return & endif
if total(x) le 0.0 then begin & print,prompt+'Total(x) is less than or equal to 0!' & error=1 & goto,return & endif
if type_of(Tnorm) eq 0 then begin & print,prompt+'Tnorm is not defined!' & error=1 & goto,return & endif
if type_of(mu) eq 0 then begin & print,prompt+'mu is not defined!' & error=1 & goto,return & endif
if mu ne 1 and mu ne 2 then begin & print,prompt+'mu must be 1 or 2!' & error=1 & goto,return & endif
_e='e!U-!N'
_hv='hv'
if mu eq 1 then begin
_p='H!U+!N'
_H='H!U0!N'
_H1s='H(1s)'
_Hs='H!U*!N(2s)'
_Hp='H!U*!N(2p)'
_Hn2='H!U*!N(n=2)'
_Hn3='H!U*!N(n=3)'
_Hn='H!U*!N(n>=2)'
_HH='H!D2!N'
_Hp='H!D2!U+!N'
endif else begin
_p='D!U+!N'
_H='D!U0!N'
_H1s='D(1s)'
_Hs='D!U*!N(2s)'
_Hp='D!U*!N(2p)'
_Hn2='D!U*!N(n=2)'
_Hn3='D!U*!N(n=3)'
_Hn='D!U*!N(n>=2)'
_HH='D!D2!N'
_Hp='D!D2!U+!N'
endelse
plus=' + '
arrow=' -> '
elastic=' (elastic)'
_R1=_e+plus+_H1s+arrow+_e+plus+_p+plus+_e
_R2=_e+plus+_p+arrow+plus+_H1s+plus+_hv
_R3=_p+plus+_H1s+arrow+_H1s+plus+_p
_R4=_H+plus+_p+arrow+_H+plus+_p+elastic
_R5=_H+plus+_HH+arrow+_H+plus+_HH+elastic
_R6=_H+plus+_H+arrow+_H+plus+_H+elastic
_Rn=[' ',_R1,_R2,_R3,_R4,_R5,_R6]
in=where(vx lt 0,count)
if count lt 1 then begin & print,prompt+'vx contains no negative elements!' & error=1 & goto,return & endif
ip=where(vx gt 0,count)
if count lt 1 then begin & print,prompt+'vx contains no positive elements!' & error=1 & goto,return & endif
iz=where(vx eq 0,count)
if count gt 0 then begin & print,prompt+'vx contains one or more zero elements!' & error=1 & goto,return & endif
diff=where(vx(ip) ne -reverse(vx(in)),count)
if count gt 0 then begin & print,prompt+'vx array elements are not symmetric about zero!' & error=1 & goto,return & endif
fHBC_input=fHBC
fHBC_input(*)=0.0
fHBC_input(*,ip)=fHBC(*,ip)
test=total(fHBC_input)
if test le 0.0 and abs(GammaxHBC) gt 0 then begin & print,prompt+'Values for fHBC(*,*) with vx > 0 are all zero!' & error=1 & goto,return & endif
;
; Output variables
;
nH=dblarr(nx)
GammaxH=dblarr(nx)
VxH=dblarr(nx)
pH=dblarr(nx)
TH=dblarr(nx)
qxH=dblarr(nx)
qxH_total=dblarr(nx)
NetHSource=dblarr(nx)
WallH=dblarr(nx)
Sion=dblarr(nx)
QH=dblarr(nx)
RxH=dblarr(nx)
QH_total=dblarr(nx)
piH_xx=dblarr(nx)
piH_yy=dblarr(nx)
piH_zz=dblarr(nx)
RxHCX=dblarr(nx)
RxH2_H=dblarr(nx)
RxP_H=dblarr(nx)
RxW_H=dblarr(nx)
EHCX=dblarr(nx)
EH2_H=dblarr(nx)
EP_H=dblarr(nx)
EW_H=dblarr(nx)
Epara_PerpH_H=dblarr(nx)
AlbedoH=0.0D0
SourceH=dblarr(nx)
SRecomb=dblarr(nx)
;
; Internal variables
;
mH=1.6726231D-27
q=1.602177D-19
k_boltz=1.380658D-23 &;Bolzmann's constant, J K^-1
Twall=293.0*k_boltz/q &;room temperature (eV)
Work=dblarr(nvr*nvx)
fHG=dblarr(nvr,nvx,nx)
NHG=dblarr(nx,max_gen+1)
;sgbaek
if ihe eq 1 then begin
mu_temp=4
Vth=sqrt(2*q*Tnorm/(mu_temp*mH))
endif else begin
Vth=sqrt(2*q*Tnorm/(mu*mH))
endelse
Vth2=vth*vth
Vth3=Vth2*Vth
fHs=dblarr(nx)
nHs=dblarr(nx)
Alpha_H_H=dblarr(nvr,nvx)
Omega_H_P=dblarr(nx)
Omega_H_H2=dblarr(nx)
Omega_H_H=dblarr(nx)
VxHG=dblarr(nx)
THG=dblarr(nx)
Wperp_paraH=dblarr(nx)
vr2vx2_ran2=dblarr(nvr,nvx)
vr2_2vx_ran2=dblarr(nvr,nvx)
vr2_2vx2_2D=dblarr(nvr,nvx)
RxCI_CX=dblarr(nx)
RxCI_H2_H=dblarr(nx)
RxCI_P_H=dblarr(nx)
Epara_Perp_CI=dblarr(nx)
CI_CX_error=fltarr(nx)
CI_H2_H_error=fltarr(nx)
CI_P_H_error=fltarr(nx)
CI_H_H_error=fltarr(nx)
Maxwell=dblarr(nvr,nvx,nx)
Make_dVr_dVx,vr,vx,Vr2pidVr,VrVr4pidVr,dVx,vrL=vrL,vrR=vrR,vxL=vxL,vxR=vxR,$
Vol=Vol,Vth_DeltaVx=Vth_DVx,Vx_DeltaVx=Vx_DVx,Vr_DeltaVr=Vr_DVr,Vr2Vx2=Vr2Vx2_2D,$
jpa=jpa,jpb=jpb,jna=jna,jnb=jnb
;
; Vr^2-2*Vx^2
;
for i=0,nvr-1 do vr2_2vx2_2D(i,*)=vr(i)^2-2*vx^2
;
; Theta-prime coordinate
;
ntheta=5 &; use 5 theta mesh points for theta integration
dTheta=replicate(1.0d0,ntheta)/ntheta
theta=!pi*(dindgen(ntheta)/ntheta+0.5/ntheta)
cos_theta=cos(theta)
;sgbaek I want to check the temperature of the input neutral
;distribution function
; vx_shift=dblarr(nx)
; vx_shift=vxi
; Tmaxwell=Ti
; Tmaxwell[*]=0.025
; mol=1
; mu=4
; shifted_Maxwellian_debug=1
;@create_shifted_maxwellian.include
; mu=2
;
; Scale input distribution function to agree with desired flux
;
gamma_input=1.0
if abs(GammaxHBC) gt 0 then gamma_input=vth*total(Vr2pidVr*(fHBC_input#(Vx*dVx)))
ratio=abs(GammaxHBC)/gamma_input
fHBC_input=fHBC_input*ratio
if abs(ratio-1) gt 0.01*truncate then begin
fHBC=fHBC_input
endif
fH(*,ip,0)=fHBC_input(*,ip)
;
; if fH2 is zero, then turn off elastic H2 <-> H collisions
;
H_H2_EL=_H_H2_EL
if total(fH2) le 0.0 then H_H2_EL=0
;
; Set iteration scheme
;
fH_iterate=0
if (H_H_EL ne 0) or (H_P_EL ne 0) or (H_H2_EL ne 0) then fH_iterate=1
fH_generations=0
if (fH_iterate ne 0) or (H_P_CX ne 0) then fH_generations=1
;
; Set flags to make use of previously computed local parameters
;
New_Grid=1
if type_of(vx_s) ne 0 then begin
test=0
ii=where(vx_s ne vx,count) & test=test+count
ii=where(vr_s ne vr,count) & test=test+count
ii=where(x_s ne x,count) & test=test+count
ii=where(Tnorm_s ne Tnorm,count) & test=test+count
ii=where(mu_s ne mu,count) & test=test+count
if test le 0 then New_Grid=0
endif
New_Protons=1
if type_of(Ti_s) ne 0 then begin
test=0
ii=where(Ti_s ne Ti,count) & test=test+count
ii=where(n_s ne n,count) & test=test+count
ii=where(vxi_s ne vxi,count) & test=test+count
if test le 0 then New_Protons=0
endif
New_Molecular_Ions=1
if type_of(nHP_s) ne 0 then begin
test=0
ii=where(nHP_s ne nHP,count) & test=test+count
ii=where(THP_s ne THP,count) & test=test+count
if test le 0 then New_Molecular_Ions=0
endif
New_Electrons=1
if type_of(Te_s) ne 0 then begin
test=0
ii=where(Te_s ne Te,count) & test=test+count
ii=where(n_s ne n,count) & test=test+count
if test le 0 then New_Electrons=0
endif
New_fH2=1
if type_of(fH2_s) ne 0 then begin
ii=where(fH2_s ne fH2,count)
if count le 0 then New_fH2=0
endif
New_fSH=1
if type_of(fSH_s) ne 0 then begin
ii=where(fSH_s ne fSH,count)
if count le 0 then New_fSH=0
endif
New_Simple_CX=1
if type_of(Simple_CX_s) ne 0 then begin
ii=where(Simple_CX_s ne Simple_CX,count)
if count le 0 then New_Simple_CX=0
endif
New_H_Seed=1
if type_of(fH_s) ne 0 then begin
ii=where(fH_s ne fH,count)
if count le 0 then New_H_Seed=0
endif
Do_sigv= New_Grid or New_Electrons
Do_ni= New_Grid or New_Electrons or New_Protons or New_Molecular_Ions
Do_fH2_moments=(New_Grid or New_fH2) and total(fH2) gt 0.0
Do_Alpha_CX= (New_Grid or (type_of(Alpha_CX) eq 0) or Do_ni or New_Simple_CX) and H_P_CX
Do_SIG_CX= (New_Grid or (type_of(SIG_CX) eq 0) or New_Simple_CX) and (Simple_CX eq 0) and Do_Alpha_CX
Do_Alpha_H_H2= (New_Grid or (type_of(Alpha_H_H2) eq 0) or New_fH2) and H_H2_EL
Do_SIG_H_H2= (New_Grid or (type_of(SIG_H_H2) eq 0)) and Do_Alpha_H_H2
Do_SIG_H_H= (New_Grid or (type_of(SIG_H_H) eq 0)) and H_H_EL
Do_Alpha_H_P= (New_Grid or (type_of(Alpha_H_P) eq 0) or Do_ni) and H_P_EL
Do_SIG_H_P= (New_Grid or (type_of(SIG_H_P) eq 0)) and Do_Alpha_H_P
Do_v_v2= (New_Grid or (type_of(v_v2) eq 0)) and (CI_Test or Do_SIG_CX or Do_SIG_H_H2 or Do_SIG_H_H or Do_SIG_H_P)
;sgbaek
print, 'do_sigv = ', do_sigv
print, 'do_ni = ', do_ni
print, 'do_fh2_moments= ',do_fh2_moments
print, 'do_alpha_cx = ', do_alpha_cx
print, 'do_sig_cx = ',do_sig_cx
print, 'do_alpha_h_h2 = ', do_alpha_h_h2
print, 'do_sig_h_h2 = ', do_sig_h_h2
print, 'do_sig_h_h = ', do_sig_h_h
print, 'do_alpha_h_p = ', do_alpha_h_p
print, 'do_sig_h_p = ', do_sig_h_p
print, 'do_v_v2 = ',do_v_v2
nH2=dblarr(nx)
vxH2=dblarr(nx)
TH2=dblarr(nx)+1.0
if Do_fH2_moments then begin
if debrief gt 1 then print,prompt+'Computing vx and T moments of fH2'
;
; Compute x flow velocity and temperature of molecular species
;
for k=0,nx-1 do begin
nH2(k)=total(Vr2pidVr*(fH2(*,*,k)#dVx))
if nH2(k) gt 0 then begin
vxH2(k)=vth*total(Vr2pidVr*(fH2(*,*,k)#(Vx*dVx)))/nH2(k)
for i=0,nvr-1 do vr2vx2_ran2(i,*)=vr(i)^2+(vx-vxH2(k)/vth)^2
TH2(k)=(2*mu*mH)*vth2*total(Vr2pidVr*((vr2vx2_ran2*fH2(*,*,k))#dVx))/(3*q*nH2(k))
endif
endfor
endif
if New_Grid then begin
if debrief gt 1 then print,prompt+'Computing vr2vx2, vr2vx_vxi2, ErelH_P'
;
; Magnitude of total normalized v^2 at each mesh point
;
vr2vx2=dblarr(nvr,nvx,nx)
for i=0,nvr-1 do for k=0,nx-1 do vr2vx2(i,*,k)=vr(i)^2+vx^2
;
; Magnitude of total normalized (v-vxi)^2 at each mesh point
;
vr2vx_vxi2=dblarr(nvr,nvx,nx)
for i=0,nvr-1 do for k=0,nx-1 do vr2vx_vxi2(i,*,k)=vr(i)^2+(vx-vxi(k)/vth)^2
;
; Atomic hydrogen ion energy in local rest frame of plasma at each mesh point
;
ErelH_P=0.5*mH*vr2vx_vxi2*vth2/q
ErelH_P=ErelH_P > 0.1 &; sigmav_cx does not handle neutral energies below 0.1 eV
ErelH_P=ErelH_P < 2.0E4 &; sigmav_cx does not handle neutral energies above 20 keV
endif
;
if New_Protons then begin
if debrief gt 1 then print,prompt+'Computing Ti/mu at each mesh point'
;
; Ti/mu at each mesh point
;
Ti_mu=dblarr(nvr,nvx,nx)
for k=0,nx-1 do Ti_mu(*,*,k)=Ti(k)/mu
;
; Compute Fi_hat
;
; sgbaek - this is for plasma ions (so mu=2 for deuterium)
if debrief gt 1 then print,prompt+'Computing fi_Hat'
vx_shift=vxi
Tmaxwell=Ti
mol=1
@create_shifted_maxwellian.include
fi_hat=Maxwell
endif
if Compute_errors then begin
if debrief gt 1 then print,prompt+'Computing Vbar_Error'
;
; Test: The average speed of a non-shifted maxwellian should be 2*Vth*sqrt(Ti(x)/Tnorm)/sqrt(!pi)
;
vx_shift=dblarr(nx)
Tmaxwell=Ti
mol=1
Shifted_Maxwellian_Debug=0
;sgbaek
if ihe eq 1 then begin; this is where test is performed, so I use helium mass
mu=4
@create_shifted_maxwellian.include
mu=2 ; I know it is deuterium
endif else begin
@create_shifted_maxwellian.include
endelse
vbar_test=dblarr(nvr,nvx,ntheta)
Vbar_Error=dblarr(nx)
for m=0,ntheta-1 do vbar_test(*,*,m)=vr2vx2(*,*,0)
_vbar_test=dblarr(nvr*nvx,ntheta)
_vbar_test(*)= vth*sqrt(vbar_test); sgbaek - careful! vth is for helium
vbar_test=dblarr(nvr,nvx)
vbar_test(*)=_vbar_test#dtheta
for k=0,nx-1 do begin
vbar=total(Vr2pidVr*((vbar_test*Maxwell(*,*,k))#dVx))
vbar_exact= 2*Vth*sqrt(Ti(k)/Tnorm)/sqrt(!pi) ;sgbaek, vth is for helium
Vbar_Error(k)=abs(vbar-vbar_exact)/vbar_exact
;print,vbar_exact,vbar,vbar_error(k) ;sgbaek
endfor
if debrief gt 0 then begin
print,prompt+'Maximum Vbar error =',max(Vbar_Error)
endif
endif
if Do_ni then begin
if debrief gt 1 then print,prompt+'Computing ni profile'
ni=n
if ni_correct then ni=n-nHP
ni=ni > 0.01*n
endif
if Do_sigv then begin
if debrief gt 1 then print,prompt+'Computing sigv'
;
; Compute sigmav rates for each reaction with option to use rates
; from CR model of Johnson-Hinnov
;
sigv=dblarr(nx,3)
;________________________________________________________________________________
; Reaction R1: e + He -> e + He(+) + e
;________________________________________________________________________________
if JH then begin
sigv(*,1)=sigmav_ion_he_goto(n,Te,/no_null)
print,'sigmav_ion_he_goto(n,Te)'
endif else begin
;sgbaek
sigv(*,1)=sigmav_ion_he(Te); sigv(*,1)=sigmav_ion_h0(Te)
print, 'sigmav_ion_he(Te)'
endelse
;________________________________________________________________________________
; Reaction R2: e + H(+) -> H(1s) + hv
;________________________________________________________________________________
if JH then begin
sigv(*,2)=JHAlpha_Coef(n,Te,/no_null)
endif else begin
sigv(*,2)=SigmaV_rec_H1s(Te)
endelse
;
; H ionization rate (normalized by vth) = reaction 1
;
alpha_ion=n*sigv(*,1)/vth
;
; Recombination rate (normalized by vth) = reaction 2
;
Rec=n*sigv(*,2)/vth
endif
;
; Compute Total Atomic Hydrogen Source
;
Sn=dblarr(nvr,nvx,nx)
;
; Add Recombination (optionally) and User-Supplied Hydrogen Source (velocity space distribution)
;
for k=0,nx-1 do begin
Sn(*,*,k)=fSH(*,*,k)/vth
if Recomb then Sn(*,*,k)=Sn(*,*,k)+fi_hat(*,*,k)*ni(k)*Rec(k)
endfor
print, 'min and max (Sn)= ', min(Sn),max(Sn)
;
;________________________________________________________________________________
; Set up arrays for charge exchange and elastic collision computations, if needed
;________________________________________________________________________________
;
if Do_v_v2 eq 1 then begin
if debrief gt 1 then print,prompt+'Computing v_v2, v_v, vr2_vx2, and vx_vx'
;
; v_v2=(v-v_prime)^2 at each double velocity space mesh point, including theta angle
;
v_v2=dblarr(nvr,nvx,nvr,nvx,ntheta)
;
; vr2_vx2=0.125* [ vr2 + vr2_prime - 2*vr*vr_prime*cos(theta) - 2*(vx-vx_prime)^2 ]
; at each double velocity space mesh point, including theta angle
;
vr2_vx2=dblarr(nvr,nvx,nvr,nvx,ntheta)
for m=0,ntheta-1 do begin
for l=0,nvx-1 do begin
for k=0,nvr-1 do begin
for i=0,nvr-1 do begin
v_v2(i,*,k,l,m)=Vr(i)^2+Vr(k)^2-2*Vr(i)*Vr(k)*cos_theta(m)+(Vx(*)-Vx(l))^2
vr2_vx2(i,*,k,l,m)=Vr(i)^2+Vr(k)^2-2*Vr(i)*Vr(k)*cos_theta(m)-2*(Vx(*)-Vx(l))^2
endfor
endfor
endfor
endfor
;
; v_v=|v-v_prime| at each double velocity space mesh point, including theta angle
;
v_v=sqrt(v_v2)
;
; vx_vx=(vx-vx_prime) at each double velocity space mesh point
;
vx_vx=dblarr(nvr,nvx,nvr,nvx)
for j=0,nvx-1 do for l=0,nvx-1 do vx_vx(*,j,*,l)=vx(j)-vx(l)
;
; Set Vr'2pidVr'*dVx' for each double velocity space mesh point
;
Vr2pidVrdVx=dblarr(nvr,nvx,nvr,nvx)
for k=0,nvr-1 do Vr2pidVrdVx(*,*,k,*)=Vr2pidVr(k)
for l=0,nvx-1 do Vr2pidVrdVx(*,*,*,l)=Vr2pidVrdVx(*,*,*,l)*dVx(l)
endif
;
if Simple_CX eq 0 and Do_SIG_CX eq 1 then begin
if debrief gt 1 then print,prompt+'Computing SIG_CX'
;________________________________________________________________________________
; Option (A) was selected: Compute SigmaV_CX from sigma directly.
; In preparation, compute SIG_CX for present velocity space grid, if it has not
; already been computed with the present input parameters
;________________________________________________________________________________
;
; Compute sigma_cx * v_v at all possible relative velocities
;
_Sig=dblarr(nvr*nvx*nvr*nvx,ntheta)
_Sig(*)=v_v*sigma_cx_h0(v_v2*(0.5*mH*vth2/q))
;
; Set SIG_CX = vr' x Integral{v_v*sigma_cx} over theta=0,2pi times differential velocity space element Vr'2pidVr'*dVx'
;
SIG_CX=dblarr(nvr*nvx,nvr*nvx)
SIG_CX(*)=Vr2pidVrdVx*(_Sig#dtheta)
;
; SIG_CX is now vr' * sigma_cx(v_v) * v_v (intergated over theta) for all possible ([vr,vx],[vr',vx'])
;
endif
;
if Do_SIG_H_H eq 1 then begin
if debrief gt 1 then print,prompt+'Computing SIG_H_H'
;________________________________________________________________________________
; Compute SIG_H_H for present velocity space grid, if it is needed and has not
; already been computed with the present input parameters
;________________________________________________________________________________
;
; Compute sigma_H_H * vr2_vx2 * v_v at all possible relative velocities
;
_Sig=dblarr(nvr*nvx*nvr*nvx,ntheta)
_Sig(*)=vr2_vx2*v_v*sigma_EL_H_H(v_v2*(0.5*mH*mu*vth2/q),/VIS)/8.0
;
; Note: For viscosity, the cross section for D -> D is the same function of
; center of mass energy as H -> H.
;
; Set SIG_H_H = vr' x Integral{vr2_vx2*v_v*sigma_H_H} over theta=0,2pi times differential velocity space element Vr'2pidVr'*dVx'
;
SIG_H_H=dblarr(nvr*nvx,nvr*nvx)
SIG_H_H(*)=Vr2pidVrdVx*(_Sig#dtheta)
;
; SIG_H_H is now vr' * sigma_H_H(v_v) * vr2_vx2 * v_v (intergated over theta) for all possible ([vr,vx],[vr',vx'])
;
endif
;
if Do_SIG_H_H2 eq 1 then begin
if debrief gt 1 then print,prompt+'Computing SIG_H_H2'
;________________________________________________________________________________
; Compute SIG_H_H2 for present velocity space grid, if it is needed and has not
; already been computed with the present input parameters
;________________________________________________________________________________
;
; Compute sigma_H_H2 * v_v at all possible relative velocities
;
_Sig=dblarr(nvr*nvx*nvr*nvx,ntheta)
_Sig(*)=v_v*sigma_EL_H_HH(v_v2*(0.5*mH*vth2/q))
;
; NOTE: using H energy here for cross-sections tabulated as H->H2
;
; Set SIG_H_H2 = vr' x vx_vx x Integral{v_v*sigma_H_H2} over theta=0,2pi times differential velocity space element Vr'2pidVr'*dVx'
;
SIG_H_H2=dblarr(nvr*nvx,nvr*nvx)
SIG_H_H2(*)=Vr2pidVrdVx*vx_vx*(_Sig#dtheta)
;
; SIG_H_H2 is now vr' *vx_vx * sigma_H_H2(v_v) * v_v (intergated over theta) for all possible ([vr,vx],[vr',vx'])
;
endif
;
print,'sgbaek do sig_h_p', do_sig_h_p
if Do_SIG_H_P eq 1 then begin
if debrief gt 1 then print,prompt+'Computing SIG_H_P'
;________________________________________________________________________________
; Compute SIG_H_P for present velocity space grid, if it is needed and has not
; already been computed with the present input parameters
;________________________________________________________________________________
;
; Compute sigma_H_P * v_v at all possible relative velocities
;
_Sig=dblarr(nvr*nvx*nvr*nvx,ntheta)
;sgbaek
print, 'Replace sigma_H_P with sigma_HE_P0000000000000000000000000000000000'
mHelium=4*mH
dum=(0.5*mHelium*vth2/q)/2 ; to scale the cross section: sigma_D (E)= sigma_H (E/2); kn1d manual, page 58
_Sig(*)=v_v*sigma_EL_P_HE(v_v2*(dum));sgbaek v_v*sigma_EL_P_H(v_v2*(0.5*mH*vth2/q))
;;_Sig(*)=v_v*sigma_EL_P_H(v_v2*(0.5*mH*vth2/q))
;
; Set SIG_H_P = vr' x vx_vx x Integral{v_v*sigma_H_P} over theta=0,2pi times differential velocity space element Vr'2pidVr'*dVx'
;
SIG_H_P=dblarr(nvr*nvx,nvr*nvx)
SIG_H_P(*)=Vr2pidVrdVx*vx_vx*(_Sig#dtheta)
;
; SIG_H_P is now vr' *vx_vx * sigma_H_P(v_v) * v_v (intergated over theta) for all possible ([vr,vx],[vr',vx'])
;
endif
;________________________________________________________________________________
; Compute Alpha_CX for present Ti and ni, if it is needed and has not
; already been computed with the present parameters
;________________________________________________________________________________
if Do_Alpha_CX eq 1 then begin
if debrief gt 1 then print,prompt+'Computing Alpha_CX'
if Simple_CX then begin
;________________________________________________________________________________
; Option (B): Use maxwellian weighted <sigma v>
;________________________________________________________________________________
;
; Charge Exchange sink rate
;
alpha_cx=sigmav_cx_H0(Ti_mu,ErelH_P)/vth
for k=0,nx-1 do alpha_cx(*,*,k)=alpha_cx(*,*,k)*ni(k)
;________________________________________________________________________________
;
endif else begin
;________________________________________________________________________________
; Option (A): Compute SigmaV_CX from sigma directly via SIG_CX
;________________________________________________________________________________
;
alpha_cx=dblarr(nvr,nvx,nx)
for k=0,nx-1 do begin
Work(*)=fi_hat(*,*,k)*ni(k)
alpha_cx(*,*,k)=SIG_CX#Work
endfor
if do_alpha_cx_test then begin
alpha_cx_test=sigmav_cx_H0(Ti_mu,ErelH_P)/vth
for k=0,nx-1 do alpha_cx_test(*,*,k)=alpha_cx_test(*,*,k)*ni(k)
print,'Compare alpha_cx and alpha_cx_test'
press_return
endif
endelse
endif
;________________________________________________________________________________
; Compute Alpha_H_H2 for inputted fH, if it is needed and has not
; already been computed with the present input parameters
;________________________________________________________________________________
if Do_Alpha_H_H2 eq 1 then begin
if debrief gt 1 then print,prompt+'Computing Alpha_H_H2'
Alpha_H_H2=dblarr(nvr,nvx,nx)
for k=0,nx-1 do begin
Work(*)=fH2(*,*,k)
Alpha_H_H2(*,*,k)=SIG_H_H2#Work
endfor
endif
;________________________________________________________________________________
; Compute Alpha_H_P for present Ti and ni
; if it is needed and has not already been computed with the present parameters
;________________________________________________________________________________
if Do_Alpha_H_P eq 1 then begin
if debrief gt 1 then print,prompt+'Computing Alpha_H_P'
Alpha_H_P=dblarr(nvr,nvx,nx)
for k=0,nx-1 do begin
Work(*)=fi_hat(*,*,k)*ni(k)
Alpha_H_P(*,*,k)=SIG_H_P#Work
endfor
endif
;
;________________________________________________________________________________
; Compute nH
;________________________________________________________________________________
for k=0,nx-1 do nH(k)=total(Vr2pidVr*(fH(*,*,k)#dVx))
if New_H_Seed then begin
MH_H_sum=dblarr(nvr,nvx,nx)
Delta_nHs=1.0
endif
;
; Compute Side-Wall collision rate
;
gamma_wall=dblarr(nvr,nvx,nx)
for k=0,nx-1 do begin
if PipeDia(k) gt 0.0 then begin
for j=0,nvx-1 do gamma_wall(*,j,k)=2*vr/PipeDia(k)
endif
endfor
print,'max and min (gamma_wall) = ', max(gamma_wall), min(gamma_wall)
;
fH_Iterate:
;
; This is the entry point for fH iteration.
; Save 'seed' values for comparison later
;