-
Notifications
You must be signed in to change notification settings - Fork 17
/
dataset_pretrained.py
136 lines (105 loc) · 3.49 KB
/
dataset_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
import numpy as np
from skimage import color
import torch
import torchvision.datasets as datasets
import ipdb
import pandas as pd
from PIL import Image
class ImageFolderInstance(datasets.ImageFolder):
"""Folder datasets which returns the index of the image as well
"""
def __init__(self, root, transform=None, target_transform=None, two_crop=False):
self.imgs = pd.read_csv('pretrained_datasets/file_names.txt', header=None)
self.root_dir = root
self.transform = transform
self.target_transform = target_transform
self.two_crop = two_crop
def __len__(self):
return len(self.imgs)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target, index) where target is class_index of the target class.
"""
#path, target = self.imgs[index]
path = self.imgs.iloc[index][0]
target = 0
#image = self.loader(path)
image = Image.open(path).convert('RGB')
if self.transform is not None:
img = self.transform(image)
if self.target_transform is not None:
target = self.target_transform(target)
if self.two_crop:
img2 = self.transform(image)
img = torch.cat([img, img2], dim=0)
return img, target, index
class RGB2Lab(object):
"""Convert RGB PIL image to ndarray Lab."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2lab(img)
return img
class RGB2HSV(object):
"""Convert RGB PIL image to ndarray HSV."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2hsv(img)
return img
class RGB2HED(object):
"""Convert RGB PIL image to ndarray HED."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2hed(img)
return img
class RGB2LUV(object):
"""Convert RGB PIL image to ndarray LUV."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2luv(img)
return img
class RGB2YUV(object):
"""Convert RGB PIL image to ndarray YUV."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2yuv(img)
return img
class RGB2XYZ(object):
"""Convert RGB PIL image to ndarray XYZ."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2xyz(img)
return img
class RGB2YCbCr(object):
"""Convert RGB PIL image to ndarray YCbCr."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2ycbcr(img)
return img
class RGB2YDbDr(object):
"""Convert RGB PIL image to ndarray YDbDr."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2ydbdr(img)
return img
class RGB2YPbPr(object):
"""Convert RGB PIL image to ndarray YPbPr."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2ypbpr(img)
return img
class RGB2YIQ(object):
"""Convert RGB PIL image to ndarray YIQ."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2yiq(img)
return img
class RGB2CIERGB(object):
"""Convert RGB PIL image to ndarray RGBCIE."""
def __call__(self, img):
img = np.asarray(img, np.uint8)
img = color.rgb2rgbcie(img)
return img