forked from dataquestio/solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mission475Solutions.Rmd
305 lines (241 loc) · 8.99 KB
/
Mission475Solutions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
title: "Conditional Probability in R: Guided Project Solutions"
output: html_document
---
```{r, warning = FALSE, message = FALSE }
library(tidyverse)
set.seed(1)
options(dplyr.summarise.inform = FALSE)
```
# Introduction
This analysis is an application of what we've learned in Dataquest's Conditional Probability course. Using a dataset of pre-labeled SMS messages, we'll create a spam filter using the Naive Bayes algorithm.
```{r}
# Bring in the dataset
spam <- read_csv("spam.csv")
```
The `spam` dataset has `r nrow(spam)` rows and `r ncol(spam)` columns. Of these messages, `r mean(spam$label == "ham") * 100`% of them are not classified as spam, the rest are spam.
# Training, Cross-validation and Test Sets
```{r}
# Calculate some helper values to split the dataset
n <- nrow(spam)
n_training <- 0.8 * n
n_cv <- 0.1 * n
n_test <- 0.1 * n
# Create the random indices for training set
train_indices <- sample(1:n, size = n_training, replace = FALSE)
# Get indices not used by the training set
remaining_indices <- setdiff(1:n, train_indices)
# Remaining indices are already randomized, just allocate correctly
cv_indices <- remaining_indices[1:(length(remaining_indices)/2)]
test_indices <- remaining_indices[((length(remaining_indices)/2) + 1):length(remaining_indices)]
# Use the indices to create each of the datasets
spam_train <- spam[train_indices,]
spam_cv <- spam[cv_indices,]
spam_test <- spam[test_indices,]
# Sanity check: are the ratios of ham to spam relatively constant?
print(mean(spam_train$label == "ham"))
print(mean(spam_cv$label == "ham"))
print(mean(spam_test$label == "ham"))
```
The number of ham messages in each dataset is relatively close to each other in each dataset. This is just to make sure that no dataset is entirely just "ham", which ruins the point of spam detection.
# Data Cleaning
```{r}
# To lowercase, removal of punctuation, weird characters, digits
tidy_train <- spam_train %>%
mutate(
# Take the messages and remove unwanted characters
sms = str_to_lower(sms) %>%
str_squish %>%
str_replace_all("[[:punct:]]", "") %>%
str_replace_all("[\u0094\u0092\u0096\n\t]", "") %>% # Unicode characters
str_replace_all("[[:digit:]]", "")
)
# Creating the vocabulary
vocabulary <- NULL
messages <- tidy_train %>% pull(sms)
# Iterate through the messages and add to the vocabulary
for (m in messages) {
words <- str_split(m, " ")[[1]]
vocabulary <- c(vocabulary, words)
}
# Remove duplicates from the vocabulary
vocabulary <- vocabulary %>% unique()
```
# Calculating Constants and Parameters
```{r}
# Isolate the spam and ham messages
spam_messages <- tidy_train %>%
filter(label == "spam") %>%
pull(sms)
ham_messages <- tidy_train %>%
filter(label == "ham") %>%
pull(sms)
# Isolate the vocabulary in spam and ham messages
spam_vocab <- NULL
for (sm in spam_messages) {
words <- str_split(sm, " ")[[1]]
spam_vocab <- c(spam_vocab, words)
}
spam_vocab
ham_vocab <- NULL
for (hm in ham_messages) {
words <- str_split(hm, " ")[[1]]
ham_vocab <- c(ham_vocab, words)
}
ham_vocab
# Calculate some important parameters from the vocab
n_spam <- spam_vocab %>% length()
n_ham <- ham_vocab %>% length()
n_vocabulary <- vocabulary %>% length()
```
# Calculating Probability Parameters
```{r}
# New vectorized approach to a calculating ham and spam probabilities
# Marginal probability of a training message being spam or ham
p_spam <- mean(tidy_train$label == "spam")
p_ham <- mean(tidy_train$label == "ham")
# Break up the spam and ham counting into their own tibbles
spam_counts <- tibble(
word = spam_vocab
) %>%
mutate(
# Calculate the number of times a word appears in spam
spam_count = map_int(word, function(w) {
# Count how many times each word appears in all spam messsages, then sum
map_int(spam_messages, function(sm) {
(str_split(sm, " ")[[1]] == w) %>% sum # for a single message
}) %>%
sum # then summing over all messages
})
)
# There are many words in the ham vocabulary so this will take a while!
# Run this code and distract yourself while the counts are calculated
ham_counts <- tibble(
word = ham_vocab
) %>%
mutate(
# Calculate the number of times a word appears in ham
ham_count = map_int(word, function(w) {
# Count how many times each word appears in all ham messsages, then sum
map_int(ham_messages, function(hm) {
(str_split(hm, " ")[[1]] == w) %>% sum
}) %>%
sum
})
)
# Join these tibbles together
word_counts <- full_join(spam_counts, ham_counts, by = "word") %>%
mutate(
# Fill in zeroes where there are missing values
spam_count = ifelse(is.na(spam_count), 0, spam_count),
ham_count = ifelse(is.na(ham_count), 0, ham_count)
)
```
# Classifying New Messages
```{r}
# This is the updated function using the vectorized approach to calculating
# the spam and ham probabilities
# Create a function that makes it easy to classify a tibble of messages
# we add an alpha argument to make it easy to recalculate probabilities
# based on this alpha (default to 1)
classify <- function(message, alpha = 1) {
# Splitting and cleaning the new message
# This is the same cleaning procedure used on the training messages
clean_message <- str_to_lower(message) %>%
str_squish %>%
str_replace_all("[[:punct:]]", "") %>%
str_replace_all("[\u0094\u0092\u0096\n\t]", "") %>% # Unicode characters
str_replace_all("[[:digit:]]", "")
words <- str_split(clean_message, " ")[[1]]
# There is a possibility that there will be words that don't appear
# in the training vocabulary, so this must be accounted for
# Find the words that aren't present in the training
new_words <- setdiff(vocabulary, words)
# Add them to the word_counts
new_word_probs <- tibble(
word = new_words,
spam_prob = 1,
ham_prob = 1
)
# Filter down the probabilities to the words present
# use group by to multiply everything together
present_probs <- word_counts %>%
filter(word %in% words) %>%
mutate(
# Calculate the probabilities from the counts
spam_prob = (spam_count + alpha) / (n_spam + alpha * n_vocabulary),
ham_prob = (ham_count + alpha) / (n_ham + alpha * n_vocabulary)
) %>%
bind_rows(new_word_probs) %>%
pivot_longer(
cols = c("spam_prob", "ham_prob"),
names_to = "label",
values_to = "prob"
) %>%
group_by(label) %>%
summarize(
wi_prob = prod(prob) # prod is like sum, but with multiplication
)
# Calculate the conditional probabilities
p_spam_given_message <- p_spam * (present_probs %>% filter(label == "spam_prob") %>% pull(wi_prob))
p_ham_given_message <- p_ham * (present_probs %>% filter(label == "ham_prob") %>% pull(wi_prob))
# Classify the message based on the probability
ifelse(p_spam_given_message >= p_ham_given_message, "spam", "ham")
}
# Use the classify function to classify the messages in the training set
# This takes advantage of vectorization
final_train <- tidy_train %>%
mutate(
prediction = map_chr(sms, function(m) { classify(m) })
)
```
# Calculating Accuracy
```{r}
# Results of classification on training
confusion <- table(final_train$label, final_train$prediction)
accuracy <- (confusion[1,1] + confusion[2,2]) / nrow(final_train)
```
The Naive Bayes Classifier achieves an accuracy of about 89%. Pretty good! Let's see how well it works on messages that it has never seen before.
# Hyperparameter Tuning
```{r}
alpha_grid <- seq(0.05, 1, by = 0.05)
cv_accuracy <- NULL
for (alpha in alpha_grid) {
# Recalculate probabilities based on new alpha
cv_probs <- word_counts %>%
mutate(
# Calculate the probabilities from the counts based on new alpha
spam_prob = (spam_count + alpha / (n_spam + alpha * n_vocabulary)),
ham_prob = (ham_count + alpha) / (n_ham + alpha * n_vocabulary)
)
# Predict the classification of each message in cross validation
cv <- spam_cv %>%
mutate(
prediction = map_chr(sms, function(m) { classify(m, alpha = alpha) })
)
# Assess the accuracy of the classifier on cross-validation set
confusion <- table(cv$label, cv$prediction)
acc <- (confusion[1,1] + confusion[2,2]) / nrow(cv)
cv_accuracy <- c(cv_accuracy, acc)
}
# Check out what the best alpha value is
tibble(
alpha = alpha_grid,
accuracy = cv_accuracy
)
```
Judging from the cross-validation set, higher $\alpha$ values cause the accuracy to decrease. We'll go with $\alpha = 0.1$ since it produces the highest cross-validation prediction accuracy.
# Test Set Performance
```{r}
# Reestablishing the proper parameters
optimal_alpha <- 0.1
# Using optimal alpha with training parameters, perform final predictions
spam_test <- spam_test %>%
mutate(
prediction = map_chr(sms, function(m) { classify(m, alpha = optimal_alpha)} )
)
confusion <- table(spam_test$label, spam_test$prediction)
test_accuracy <- (confusion[1,1] + confusion[2,2]) / nrow(spam_test)
test_accuracy
```
We've achieved an accuracy of 93% in the test set. Not bad!