diff --git a/discrete_optimization/coloring/solvers/coloring_cpsat_solver.py b/discrete_optimization/coloring/solvers/coloring_cpsat_solver.py index 5420ac3f4..c8aefe429 100644 --- a/discrete_optimization/coloring/solvers/coloring_cpsat_solver.py +++ b/discrete_optimization/coloring/solvers/coloring_cpsat_solver.py @@ -15,6 +15,10 @@ Problem, Solution, ) +from discrete_optimization.generic_tools.hyperparameters.hyperparameter import ( + CategoricalHyperparameter, + EnumHyperparameter, +) from discrete_optimization.generic_tools.ortools_cpsat_tools import OrtoolsCPSatSolver @@ -24,6 +28,11 @@ class ModelingCPSat(Enum): class ColoringCPSatSolver(OrtoolsCPSatSolver, SolverColoringWithStartingSolution): + hyperparameters = [ + EnumHyperparameter(name="modeling", enum=ModelingCPSat), + CategoricalHyperparameter(name="warmstart", choices=[True, False]), + ] + SolverColoringWithStartingSolution.hyperparameters + def __init__( self, problem: Problem, @@ -102,6 +111,7 @@ def init_model_binary(self, nb_colors: int, **kwargs): self.variables["used"] = used def init_model_integer(self, nb_colors: int, **kwargs): + used_variable = kwargs.get("used_variable", False) cp_model = CpModel() variables = [ cp_model.NewIntVar(0, nb_colors - 1, name=f"c_{i}") @@ -119,39 +129,63 @@ def init_model_integer(self, nb_colors: int, **kwargs): == self.problem.constraints_coloring.color_constraint[node] ) used = [cp_model.NewBoolVar(name=f"used_{c}") for c in range(nb_colors)] + if used_variable: - def add_indicator(vars, value, presence_value, model): - bool_vars = [] - for var in vars: - bool_var = model.NewBoolVar("") - model.Add(var == value).OnlyEnforceIf(bool_var) - model.Add(var != value).OnlyEnforceIf(bool_var.Not()) - bool_vars.append(bool_var) - model.AddMaxEquality(presence_value, bool_vars) - - for j in range(nb_colors): - if self.problem.use_subset: - indexes = self.problem.index_subset_nodes - vars = [variables[i] for i in indexes] - else: - vars = variables - add_indicator(vars, j, used[j], cp_model) - cp_model.Minimize(sum(used)) + def add_indicator(vars, value, presence_value, model): + bool_vars = [] + for var in vars: + bool_var = model.NewBoolVar("") + model.Add(var == value).OnlyEnforceIf(bool_var) + model.Add(var != value).OnlyEnforceIf(bool_var.Not()) + bool_vars.append(bool_var) + model.AddMaxEquality(presence_value, bool_vars) + + for j in range(nb_colors): + if self.problem.use_subset: + indexes = self.problem.index_subset_nodes + vars = [variables[i] for i in indexes] + else: + vars = variables + add_indicator(vars, j, used[j], cp_model) + cp_model.Minimize(sum(used)) + else: + nbc = cp_model.NewIntVar(0, nb_colors, name="nbcolors") + cp_model.AddMaxEquality( + nbc, [variables[i] for i in self.problem.index_subset_nodes] + ) + cp_model.Minimize(nbc) self.cp_model = cp_model self.variables["colors"] = variables self.variables["used"] = used + def set_warmstart(self, solution: ColoringSolution): + if self.modeling == ModelingCPSat.INTEGER: + self.set_warmstart_integer(solution) + if self.modeling == ModelingCPSat.BINARY: + self.set_warmstart_integer() + + def set_warm_start_integer(self, solution: ColoringSolution): + for i in range(len(solution.colors)): + self.cp_model.AddHint(self.variables["colors"][i], solution.colors[i]) + + def set_warm_start_binary(self, solution: ColoringSolution): + for i in range(len(solution.colors)): + c = solution.colors[i] + for color in self.variables["colors"][i]: + self.cp_model.AddHint(self.variables["colors"][i][color], color == c) + def init_model(self, **args: Any) -> None: modeling = args.get("modeling", ModelingCPSat.INTEGER) + do_warmstart = args.get("warmstart", True) assert isinstance(modeling, ModelingCPSat) - if "nb_colors" not in args: + if "nb_colors" not in args or do_warmstart: solution = self.get_starting_solution(**args) nb_colors = self.problem.count_colors_all_index(solution.colors) - args["nb_colors"] = nb_colors - else: - nb_colors = args["nb_colors"] + args["nb_colors"] = min(args.get("nb_colors", nb_colors), nb_colors) if modeling == ModelingCPSat.BINARY: self.init_model_binary(**args) if modeling == ModelingCPSat.INTEGER: self.init_model_integer(**args) + if do_warmstart: + self.set_warmstart(solution=solution) self.modeling = modeling diff --git a/discrete_optimization/coloring/solvers/coloring_solver_with_starting_solution.py b/discrete_optimization/coloring/solvers/coloring_solver_with_starting_solution.py index 31af4b887..5d0fc843a 100644 --- a/discrete_optimization/coloring/solvers/coloring_solver_with_starting_solution.py +++ b/discrete_optimization/coloring/solvers/coloring_solver_with_starting_solution.py @@ -14,11 +14,20 @@ GreedyColoring, NXGreedyColoringMethod, ) +from discrete_optimization.generic_tools.hyperparameters.hyperparameter import ( + CategoricalHyperparameter, + EnumHyperparameter, +) logger = logging.getLogger(__name__) class SolverColoringWithStartingSolution(SolverColoring): + hyperparameters = [ + CategoricalHyperparameter("greedy_start", choices=[True], default=True), + EnumHyperparameter("greedy_method", enum=NXGreedyColoringMethod), + ] + def get_starting_solution(self, **kwargs: Any) -> ColoringSolution: """Used by the init_model method to provide a greedy first solution diff --git a/discrete_optimization/generic_tools/cp_tools.py b/discrete_optimization/generic_tools/cp_tools.py index 08900e0f2..7043e37d2 100644 --- a/discrete_optimization/generic_tools/cp_tools.py +++ b/discrete_optimization/generic_tools/cp_tools.py @@ -129,6 +129,19 @@ def default() -> "ParametersCP": optimisation_level=1, ) + @staticmethod + def default_cpsat() -> "ParametersCP": + return ParametersCP( + time_limit=100, + intermediate_solution=True, + all_solutions=False, + nr_solutions=1000, + free_search=False, + multiprocess=True, + nb_process=6, + optimisation_level=1, + ) + @staticmethod def default_fast_lns() -> "ParametersCP": return ParametersCP( diff --git a/discrete_optimization/generic_tools/ortools_cpsat_tools.py b/discrete_optimization/generic_tools/ortools_cpsat_tools.py index 21f6dcc1a..c55dbfaf4 100644 --- a/discrete_optimization/generic_tools/ortools_cpsat_tools.py +++ b/discrete_optimization/generic_tools/ortools_cpsat_tools.py @@ -82,7 +82,7 @@ def solve( if self.cp_model is None: self.init_model(**kwargs) if parameters_cp is None: - parameters_cp = ParametersCP.default() + parameters_cp = ParametersCP.default_cpsat() solver = CpSolver() solver.parameters.max_time_in_seconds = parameters_cp.time_limit solver.parameters.num_workers = parameters_cp.nb_process diff --git a/examples/coloring/coloring_cpspat_solver_example.py b/examples/coloring/coloring_cpspat_solver_example.py index 077bb35f0..3cebbe1e8 100644 --- a/examples/coloring/coloring_cpspat_solver_example.py +++ b/examples/coloring/coloring_cpspat_solver_example.py @@ -31,12 +31,13 @@ def run_cpsat_coloring(): logging.basicConfig(level=logging.INFO) - file = [f for f in get_data_available() if "gc_70_5" in f][0] + file = [f for f in get_data_available() if "gc_100_7" in f][0] color_problem = parse_file(file) solver = ColoringCPSatSolver(color_problem, params_objective_function=None) - solver.init_model(nb_colors=20, modeling=ModelingCPSat.BINARY) - p = ParametersCP.default() - p.time_limit = 20 + solver.init_model(modeling=ModelingCPSat.BINARY, warmstart=True) + p = ParametersCP.default_cpsat() + p.time_limit = 100 + logging.info("Starting solve") result_store = solver.solve( callbacks=[NbIterationTracker(step_verbosity_level=logging.INFO)], parameters_cp=p, diff --git a/examples/coloring/optuna_full_example_coloring.py b/examples/coloring/optuna_full_example_coloring.py new file mode 100644 index 000000000..8eed535ed --- /dev/null +++ b/examples/coloring/optuna_full_example_coloring.py @@ -0,0 +1,132 @@ +# Copyright (c) 2024 AIRBUS and its affiliates. +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +"""Example using OPTUNA to tune hyperparameters of Cpsat solver for coloring. + +Results can be viewed on optuna-dashboard with: + + optuna-dashboard optuna-journal.log + +""" +import logging +from typing import Any, Dict, List, Type + +import optuna +from optuna.storages import JournalFileStorage, JournalStorage +from optuna.trial import Trial, TrialState + +from discrete_optimization.coloring.coloring_parser import ( + get_data_available, + parse_file, +) +from discrete_optimization.coloring.solvers.coloring_cpsat_solver import ( + ColoringCPSatSolver, +) +from discrete_optimization.generic_tools.callbacks.optuna import ( + OptunaPruningSingleFitCallback, +) +from discrete_optimization.generic_tools.cp_tools import ParametersCP +from discrete_optimization.generic_tools.do_problem import ModeOptim +from discrete_optimization.generic_tools.do_solver import SolverDO + +logger = logging.getLogger(__name__) + + +seed = 42 +optuna_nb_trials = 150 + +study_name = f"coloring_cpsat-auto-250---" +storage_path = "./optuna-journal.log" # NFS path for distributed optimization + +# Solvers to test +solvers_to_test: List[Type[SolverDO]] = [ColoringCPSatSolver] +kwargs_fixed_by_solver: Dict[Type[SolverDO], Dict[str, Any]] = {ColoringCPSatSolver: {}} +# we need to map the classes to a unique string, to be seen as a categorical hyperparameter by optuna +# by default, we use the class name, but if there are identical names, f"{cls.__module__}.{cls.__name__}" could be used. +solvers_by_name: Dict[str, Type[SolverDO]] = { + cls.__name__: cls for cls in solvers_to_test +} + +# problem definition +file = [f for f in get_data_available() if "gc_250_5" in f][0] +problem = parse_file(file) + +# sense of optimization +objective_register = problem.get_objective_register() +if objective_register.objective_sense == ModeOptim.MINIMIZATION: + direction = "minimize" +else: + direction = "maximize" + +# objective names +objs, weights = objective_register.get_list_objective_and_default_weight() + + +# objective definition +def objective(trial: Trial): + # hyperparameters to test + + # first parameter: solver choice + solver_name = trial.suggest_categorical("solver", choices=solvers_by_name) + solver_class = solvers_by_name[solver_name] + + # hyperparameters for the chosen solver + hyperparameters_names = solver_class.get_hyperparameters_names() + hyperparameters_values = solver_class.suggest_hyperparameters_values_with_optuna( + names=hyperparameters_names, + trial=trial, + ) + # use existing value if corresponding to a previous complete trial + states_to_consider = (TrialState.COMPLETE,) + trials_to_consider = trial.study.get_trials( + deepcopy=False, states=states_to_consider + ) + for t in reversed(trials_to_consider): + if trial.params == t.params: + logger.warning( + "Trial with same hyperparameters as a previous complete trial: returning previous fit." + ) + return t.value + + # prune if corresponding to a previous failed trial + states_to_consider = (TrialState.FAIL,) + trials_to_consider = trial.study.get_trials( + deepcopy=False, states=states_to_consider + ) + for t in reversed(trials_to_consider): + if trial.params == t.params: + raise optuna.TrialPruned( + "Pruning trial identical to a previous failed trial." + ) + + # construct kwargs for __init__, init_model, and solve + kwargs = kwargs_fixed_by_solver[solver_class] + kwargs.update(dict(zip(hyperparameters_names, hyperparameters_values))) + # solver init + solver = solver_class(problem=problem, **kwargs) + solver.init_model(**kwargs) + p = ParametersCP.default_cpsat() + p.nb_process = 4 + p.time_limit = 10 + # solve + sol, fit = solver.solve( + parameters_cp=p, + callbacks=[ + OptunaPruningSingleFitCallback(trial=trial, **kwargs), + ], + **kwargs, + ).get_best_solution_fit() + return fit + + +# create study + database to store it +storage = JournalStorage(JournalFileStorage(storage_path)) +study = optuna.create_study( + study_name=study_name, + direction=direction, + sampler=optuna.samplers.TPESampler(seed=seed), + storage=storage, + load_if_exists=True, +) +study.set_metric_names(["nb_colors"]) +study.optimize(objective, n_trials=optuna_nb_trials)