-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvex_env_V1.cu
407 lines (302 loc) · 9.29 KB
/
Convex_env_V1.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*********************************************************************************************
Convex Envelope computation in a 2 dimensional plane
Version 1.0
Gagan Bihari MIshra Chiranjeeb Basak
Advisor : Dr. Mireille Gregoire
Institute of Parallel and Distributed Systems
University of Stuttgart, Germany
**********************************************************************************************/
//NPOINTS points in 2D with known coordinates x,y
//hypothesis: no 3 points are aligned
// we want to calculate the convex envelope of those points
//N.B.: there are are algorithms that are much more efficient than this one,
//but that are also more complicated to parallelize
#include "cutil.h"
#include <stdio.h>
#define NPOINTS 2048 //number of points
#define TYPE int
#define blockSizeX 256
#define blockSizeY 2
TYPE h_x[NPOINTS]; //x coordinate of points
TYPE h_y[NPOINTS]; //y coordinate of points
int h_edges[NPOINTS*2]; //valid edges
int h_edges_tmp[NPOINTS*2]; //valid edges
int h_res_device[NPOINTS+1];
int h_res[NPOINTS+1]; //result: indexes in order of the different points of the convex envelope
//can be as long as NPOINTS (the points form a convex polygon)
//there are either 0 or 2 valid edges starting from a point i
//if 0 -> both values at position 2*i and 2*i+1 are -1
//if 2-> the indexes of the other ends from the 2 edges
/****************************
GPU code begins here --
*****************************/
__global__ void find_edges_on_device(TYPE * h_x, TYPE * h_y, int *h_edges){
for (int i=threadIdx.x+blockIdx.x*blockDim.x; i<NPOINTS; i+=blockDim.x*gridDim.x){
for (int j=threadIdx.y+blockIdx.y*blockDim.y; j<NPOINTS; j+=blockDim.y*gridDim.y)
{
if (i>=j)
{
continue; //edge i,j == edge j,i
}
//all the others points should be on the same side of the edge i,j
//normal to the edge (unnormalized)
TYPE nx= - ( h_y[j]- h_y[i]);
TYPE ny= h_x[j]- h_x[i];
int k=0;
while ((k==i)||(k==j))
{
k++;
} //k will be 0,1,or 2, but different from i and j to avoid
long scalarProduct=nx* (h_x[k]-h_x[i])+ny* (h_y[k]-h_y[i]);
if (scalarProduct<0)
{
nx*=-1;
ny*=-1;
}
//we have now at least one point with scalarProduct>0
//all the other points should comply with the same condition for
//the edge to be valid
bool isValid=true;
//loop on all the points
for (int k=0; k<NPOINTS; k++)
{
scalarProduct=nx* (h_x[k]-h_x[i])+ny* (h_y[k]-h_y[i]);
if (scalarProduct <0)
{ //invalid edge
isValid = false;
break;
}
}
if (isValid)
{
int tmp_i = i;
int tmp_j = j;
//we use atomic functions to write to the global memory
//as two threads might be writing to the same location
if( -1 != atomicCAS(&h_edges[2*i], -1, tmp_j) )
h_edges[2*i+1]=j;
if( -1 != atomicCAS(&h_edges[2*j], -1, tmp_i) )
h_edges[2*j+1]=i;
}
}
}
}
/****************************
Host code begins here --
*****************************/
void find_edges_on_host(TYPE * h_x, TYPE * h_y, int *h_edges)
{
//loop on all possible edges == pairs of points
for (int i=0; i<NPOINTS; i++)
{
for (int j=0; j<NPOINTS; j++)
{
if (i>=j)
{
continue; //edge i,j == edge j,i
}
//all the others points should be on the same side of the edge i,j
//normal to the edge (unnormalized)
TYPE nx= - ( h_y[j]- h_y[i]);
TYPE ny= h_x[j]- h_x[i];
int k=0;
while ((k==i)||(k==j))
{
k++;
} //k will be 0,1,or 2, but different from i and j to avoid
//scalarProduct=0
TYPE scalarProduct=nx* (h_x[k]-h_x[i])+ny* (h_y[k]-h_y[i]);
if (scalarProduct<0)
{
nx*=-1;
ny*=-1;
}
//we have now at least one point with scalarProduct>0
//all the other points should comply with the same condition for
//the edge to be valid
bool isValid=true;
//loop on all the points
for (int k=0; k<NPOINTS; k++)
{
scalarProduct=nx* (h_x[k]-h_x[i])+ny* (h_y[k]-h_y[i]);
if (scalarProduct <0)
{ //invalid edge
isValid = false;
break;
}
}
if (isValid)
{
//write the edge to h_edges in the first available position
if (h_edges[2*i]==-1)
{
h_edges[2*i]=j;// atomic
//do a check if the value is updated
}
else
{
h_edges[2*i+1]=j;
}
//we write the edge two times for a direct access in the next stage
if (h_edges[2*j]==-1)
{
h_edges[2*j]=i;
}
else
{
h_edges[2*j+1]=i;
}
}
}
}
return;
}
/****************************
GPU calculation can result in an array which is inverted version of the host result.
In such a case, we have to revert the array before comparing with the CPU result.
*****************************/
void reverse_array(int *h_res_device, int *reversed_dev_result)
{
int i = NPOINTS;
int j = 0;
while(h_res_device[i] == -1){
reversed_dev_result[i] = -1;
i--;
}
while(i >= 0){
reversed_dev_result[j] = h_res_device[i];
j++;
i--;
}
}
/****************************
This function sorts the array returned by the host/GPU function and finds out the
points which form the convex polygon
*****************************/
int sort_edges(int * h_edges, int * h_res)
{
// find the first point that belongs to the convex envelope
int i0=0;
int lastValue = 0;
while ((i0<NPOINTS)&&(h_edges[2*i0]==-1))
{
i0++;
}
//i0 now belongs to the envelope
h_res[0]=i0;
h_res[1]=h_edges[2*i0];
int k=2; //index in the envelope
lastValue=h_res[1];
while (k<=NPOINTS)
{
//follow the edges, take the points that are not already in h_res
if (h_edges[2*lastValue]==h_res[k-2])
{
h_res[k]=h_edges[2*lastValue+1];
}
else
{
h_res[k]=h_edges[2*lastValue];
}
lastValue=h_res[k];
if (h_res[k]==i0)
{
break;
}
k++;
}
return k;
}
/****************************
This function compares two arrays passed as arguements
*****************************/
bool check(int *a,int* b){
for(int i=0;i<NPOINTS+1;i++){
if(a[i]!=b[i]){
return true;
}
}
return false;
}
/****************************
The main function
*****************************/
int main(int argc, char** args )
{
TYPE *dX;
TYPE *dY;
int *d_edges;
int *reversed_dev_result;
//we need timers to measure the execution times
unsigned int timer1=0;
unsigned int timer2=0;
//allocate memory in the device
cudaMalloc((void **)&dX,NPOINTS*sizeof(TYPE));
cudaMalloc((void **)&dY,NPOINTS*sizeof(TYPE));
cudaMalloc((void **)&d_edges,NPOINTS*2*sizeof(int));
CUT_SAFE_CALL(cutCreateTimer(&timer1));
CUT_SAFE_CALL(cutCreateTimer(&timer2));
//initialisation of the coordinates
for (int i=0; i<NPOINTS; i++)//loop on points
{
h_x[i]=(rand()%100000);//10000.0f-0.5f;
h_y[i]=(rand()%100000);//10000.0f-0.5f;
h_edges[i*2]=-1; //no valid edge by default
h_edges[i*2+1]=-1;
h_edges_tmp[i*2]=-1; //no valid edge by default
h_edges_tmp[i*2+1]=-1;
h_res[i+1]=-1;
h_res_device[i+1]=-1;
}
//Copy the arrays from the host to the device
cudaMemcpy(dX,h_x,NPOINTS*sizeof(TYPE),cudaMemcpyHostToDevice);
cudaMemcpy(dY,h_y,NPOINTS*sizeof(TYPE),cudaMemcpyHostToDevice);
cudaMemcpy(d_edges,h_edges_tmp,NPOINTS*2*sizeof(int),cudaMemcpyHostToDevice);
//Set the grid and block dimensions before calling the kernel
dim3 bS(blockSizeX,blockSizeY,1);
dim3 gS((NPOINTS+blockSizeX-1)/blockSizeX,(NPOINTS+blockSizeY-1)/blockSizeY,1);
//Start the timer
CUT_SAFE_CALL(cutStartTimer(timer1));
//Call the CUDA Kernel
find_edges_on_device<<<gS,bS>>>(dX,dY,d_edges);
cudaThreadSynchronize();
//Stop the timer
CUT_SAFE_CALL(cutStopTimer(timer1));
//Copy the result back to the Host
cudaMemcpy(h_edges_tmp,d_edges,NPOINTS*2*sizeof(int),cudaMemcpyDeviceToHost);
//find out which edges belong to the convex envelope in the host function
CUT_SAFE_CALL(cutStartTimer(timer2));
find_edges_on_host(h_x, h_y, h_edges);
CUT_SAFE_CALL(cutStopTimer(timer2));
float time1=cutGetAverageTimerValue(timer1);
float time2=cutGetAverageTimerValue(timer2);
printf(" Time on Device %f ms \t Time on Host %f ms\n",time1, time2);
//reset timer1 and timer2
CUT_SAFE_CALL(cutResetTimer(timer1));
CUT_SAFE_CALL(cutResetTimer(timer2));
//sort edges found in host
int nedges=sort_edges(h_edges, h_res);
//sort edges found in device
nedges=sort_edges(h_edges_tmp, h_res_device);
//compare the host and device results
if(check(h_res,h_res_device)){
//if they mismatch, possibly the device result is the reverse of host result
//in such a case, reverse one of the array and compare again
reversed_dev_result = (int *)malloc((NPOINTS+1) * sizeof(int));
reverse_array(h_res_device, reversed_dev_result);
//after reversing, compare again
if(check(h_res,reversed_dev_result))
printf("\nError!\n");
else
printf("\nPassed!\n");
//Don't forget to free the allocated memory
free(reversed_dev_result);
}
else
printf("\nPassed!\n");
//free the allocated memory in device
cudaFree(dX);
cudaFree(dY);
cudaFree(d_edges);
return 0;
}