-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexer.scala
321 lines (240 loc) · 8.83 KB
/
Indexer.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
package search.sol
import search.src.{FileIO, PorterStemmer, StopWords}
import scala.collection.mutable
import scala.util.matching.Regex
import scala.xml.NodeSeq
class Indexer(file: String) {
// list of titles, to be added to and cleared later
var titleList: List[String] = List()
// regex to be used in tokenizing
val regex = new Regex("""\[\[[^\[]+?\]\]|[^\W_]+'[^\W_]+|[^\W_]+""")
// maps page ids to the page title
val idToTitle: scala.collection.mutable.HashMap[Int, String] = scala.collection.mutable.HashMap[Int, String]()
// maps page ids to the frequency of the most frequent word in the text of the page
val idToMaxWordCount: scala.collection.mutable.HashMap[Int, Double] = scala.collection.mutable.HashMap[Int, Double]()
// maps words to hashmaps that maps page ids to the frequency of the word in that page
val wordToIdToWordFrequency: scala.collection.mutable.HashMap[String, scala.collection.mutable.HashMap[Int, Double]] =
scala.collection.mutable.HashMap[String, scala.collection.mutable.HashMap[Int, Double]]()
// maps ids to the titles it links to
val idsToLinks: scala.collection.mutable.HashMap[Int, List[String]] =
scala.collection.mutable.HashMap[Int, List[String]]()
// maps page ids to their page's rank
val idToRank: scala.collection.mutable.HashMap[Int, Double] = new scala.collection.mutable.HashMap[Int, Double]
/** pipeLinkProcessor
* processes pipe links
*
* @param link the link
* @param id the id of the page its contained in
* @return the words contained in the link that should be processed by wordHandler
*/
def pipeLinkProcessor(link: String, id: Int): List[String] = {
val pipeLinkRegex: Regex = new Regex("""[^\[\|\]]+""")
// List with first element title, second element text
val internalWords: List[String] = pipeLinkRegex.findAllMatchIn(link).toList.map { aMatch => aMatch.matched }
val linkTitle: String = internalWords(0)
if (!linkTitle.equals(idToTitle(id)) && titleList.contains(linkTitle) && !idsToLinks(id).contains(linkTitle)) {
idsToLinks(id) = linkTitle :: idsToLinks(id)
}
internalWords(1).split(" ").toList
}
/** normalLinkProcessor
* processes normal links
*
* @param link the link
* @param id the id of the page its contained in
* @return the words contained in the link that should be processed by wordHandler
*/
def normalLinkProcessor(link: String, id: Int): List[String] = {
val linkRegex: Regex = new Regex("""[^\[\]]+""")
val textInAList: List[String] = linkRegex.findAllMatchIn(link).toList.map { aMatch => aMatch.matched }
val text: String = textInAList(0)
if (!text.equals(idToTitle(id)) && titleList.contains(text) && !idsToLinks(id).contains(text)) {
idsToLinks(id) = text :: idsToLinks(id)
}
text.split(" ").toList
}
/** metaLinkProcessor
* processes metaLinks
*
* @param link the link
* @param id the id of the page its contained in
*/
def metaLinkProcessor(link: String, id: Int): Unit = {
val linkRegex: Regex = new Regex("""[^\[\]]+""")
val newTitle: List[String] = linkRegex.findAllMatchIn(link).toList.map { aMatch => aMatch.matched }
val text: String = newTitle(0)
if (!text.equals(idToTitle(id)) && titleList.contains(text) && !idsToLinks(id).contains(text)) {
idsToLinks(id) = text :: idsToLinks(id)
}
}
/** wordhandler
* handles the preprocessing and hasmap-adding for a single word
*
* @param word the word
* @param id the id of the page it's contained in
* @param map the freqMap, map of words to wordFrequencies that is local to indexerHelper
*/
def wordHandler(word: String, id: Int, map: scala.collection.mutable.HashMap[String, Int]): Unit = {
if (StopWords.isStopWord(word)) {
} else {
val stemmed = PorterStemmer.stem(word).toLowerCase
if (StopWords.isStopWord(stemmed)) {} else {
if (map.contains(stemmed)) {
map(stemmed) = map(stemmed) + 1
} else {
map(stemmed) = 1
}
if (wordToIdToWordFrequency.contains(stemmed)) {
if (wordToIdToWordFrequency(stemmed).contains(id)) {
wordToIdToWordFrequency(stemmed)(id) = wordToIdToWordFrequency(stemmed)(id) + 1
} else {
wordToIdToWordFrequency(stemmed)(id) = 1
}
} else {
wordToIdToWordFrequency(stemmed) = scala.collection.mutable.HashMap(id -> 1)
}
}
}
}
/** indexerHelper
* indexes an individual page in the corpus
*
* @param i a page
*/
def indexerHelper(i: NodeSeq) {
// gets the title
val title: String = (i \ "title").text.trim()
// gets the id
val id: Int = (i \ "id").text.trim().toInt
// add to the idToTitle Map
idToTitle(id) = title
// add the id to the ids to links map
idsToLinks(id) = List()
// Call findAllMatchIn to get an iterator of Matches
val matchesIterator = regex.findAllMatchIn((i \ "text").text)
// Convert the Iterator to a List and extract the matched substrings, creating a tokenized list
val matchesList: List[String] = matchesIterator.toList.map { aMatch => aMatch.matched }
// map with word frequencies
val freqMap: scala.collection.mutable.HashMap[String, Int] = scala.collection.mutable.HashMap[String, Int]()
for (word <- matchesList) {
// see if it's a link
if (word.matches("""\[\[[^\[]+?\]\]""")) {
// see if it's a pipe link, do stuff
if (word.matches("""\[\[[^\[]+?\|[^\[]+?\]\]""")) {
val wordList: List[String] = pipeLinkProcessor(word, id)
wordList.map(w => wordHandler(w, id, freqMap))
} else if (word.matches("""\[\[[^\[]+?\:[^\[]+?\]\]""")) {
metaLinkProcessor(word, id)
} else {
val wordList = normalLinkProcessor(word, id)
wordList.map(w => wordHandler(w, id, freqMap))
}
} else {
wordHandler(word, id, freqMap)
}
}
if (idsToLinks(id).isEmpty) {
idsToLinks(id) = titleList.filter(x => x != title)
}
if (freqMap.isEmpty) {
idToMaxWordCount(id) = 0
} else {
idToMaxWordCount(id) = freqMap.valuesIterator.max
}
}
/**
* indexer
* indexes the corpus, i.e. fills out all the relevant hashmaps (idToTitle, idToMaxWordCount,
* wordToIdToWordFrequency, idsToLinks)
*/
def indexer(): Unit = {
val pageSeq: NodeSeq = xml.XML.loadFile(this.file) \ "page"
titleList = {
var result = List[String]()
for (i <- pageSeq \ "title") {
result = i.text.trim() :: result
}
result
}
for (i <- pageSeq) {
indexerHelper(i)
}
// clear titleList
titleList = List()
}
/** pagerank
* computes the rank of each page based on links in the corpus
*/
def pagerank() {
val weights: mutable.HashMap[Int, mutable.HashMap[Int, Double]] =
new mutable.HashMap[Int, mutable.HashMap[Int, Double]]()
val eps = 0.15
val n = idToTitle.size
// initialize weights: weights(i)(j) is the weight that j gives to i
for (j <- idToTitle.keysIterator) {
for (i <- idToTitle.keysIterator) {
if (weights.contains(i)) {} else {
weights(i) = mutable.HashMap[Int, Double]()
}
if (idsToLinks(j).contains(idToTitle(i))) {
weights(i)(j) = (eps / n) + ((1.0 - eps) * (1.0 / idsToLinks(j).size))
} else {
weights(i)(j) = (eps / n)
}
}
idsToLinks.remove(j)
}
idsToLinks.clear()
val idList: List[Int] = idToTitle.keysIterator.toList
var r: Array[Double] = Array.fill[Double](n)(0)
var rp: Array[Double] = Array.fill[Double](n)(1.0 / n)
def distance(array1: Array[Double], array2: Array[Double]): Double = {
var sum: Double = 0.0
for (i <- 0 until n) {
val x: Double = array2(i) - array1(i)
sum = sum + (x * x)
}
Math.sqrt(sum)
}
while (distance(r, rp) > 0.001) {
r = rp
for (j <- 0 to n - 1) {
rp(j) = 0
for (k <- 0 to n - 1) {
rp(j) = rp(j) + (weights(idList(j))(idList(k)) * r(k))
}
}
}
for (i <- 0 to n - 1) {
idToRank(idList(i)) = rp(i)
}
}
}
/*
arg(0) is filepath of the corpus
arg(1) is filepath of titles.txt
arg(2) is filepath of words.txt
arg(3) is filepath of docs.txt
*/
/** Indexing
* main object
*/
object Indexing {
/**
* main method, indexes a corpus
*
* @param args : in order, the filepath of the corpus, the filepath of titles.txt, the filepath of words.txt,
* the file path of docs.txt
*/
def main(args: Array[String]) = {
val index = new Indexer(args(0))
index.indexer()
index.pagerank()
FileIO.printTitleFile(args(1),
index.idToTitle)
FileIO.printWordsFile(args(2),
index.wordToIdToWordFrequency)
FileIO.printDocumentFile(args(3),
index.idToMaxWordCount, index.idToRank)
}
}