Skip to content
This repository has been archived by the owner on Jun 16, 2021. It is now read-only.

Latest commit

 

History

History
110 lines (94 loc) · 6.43 KB

README.md

File metadata and controls

110 lines (94 loc) · 6.43 KB

Yarn Kernel Provider

NOTE: This repository is experimental and undergoing frequent changes!

The Yarn Kernel Provider package provides support necessary for launching Jupyter kernels within YARN clusters. It adheres to requirements set forth in the Jupyter Kernel Management refactoring for kernel management and discovery. This is accomplished via two classes:

  1. YarnKernelProvider is invoked by the application to locate and identify specific kernel specificiations (kernelspecs) that manage kernel lifecycles within a YARN cluster.
  2. YarnKernelLifecycleManager is instantiated by the RemoteKernelManager to peform the kernel lifecycle management. It performs post-launch discovery of the application and handles its termination via the YARN REST API.

Installation of yarn_kernel_provider also includes a Jupyter application that can be used to create appropriate kernel specifications relative to YARN Spark and Dask.

Installation

Yarn Kernel Provider is a pip-installable package:

pip install yarn_kernel_provider

##Usage Because this version of Jupyter kernel management is still in its experimental stages, a special branch of Notebook is required, which includes the machinery to leverage the new framework. An installable build of this branch is available as an asset on the interim-dev release of the Remote Kernel Provider on which Yarn Kernel Provider depends.

YARN Kernel Specifications

Criteria for discovery of the kernel specification via the YarnKernelProvider is that a yarnkp_kernel.json file exist in a sub-directory named kernels in the Jupyter path hierarchy.

Such kernel specifications should be initially created using the included Jupyter applicationjupyter-yarn-kernelspec to insure the minimally viable requirements exist. This application can be used to create specifications for YARN Spark and Dask. Spark support is available for three languages: Python, Scala and R, while Dask support is available for Python.

To create kernel specifications for use by YarnKernelProvider use juptyer yarn-kernelspec install. Here are it's parameter options, produced using jupyter yarn-kernelspec install --help. All parameters are optional with no parameters yielding a Python-based kernelspec for Spark on the local YARN cluster. However, locations for SPARK_HOME and Python runtimes may likely require changes if not provided.

A Jupyter kernel for talking to Spark/Dask within a YARN cluster

Options
-------

Arguments that take values are actually convenience aliases to full
Configurables, whose aliases are listed on the help line. For more information
on full configurables, see '--help-all'.

--user
    Install to the per-user kernel registry
--sys-prefix
    Install to Python's sys.prefix. Useful in conda/virtual environments.
--dask
    Install kernelspec for Dask YARN.
--debug
    set log level to logging.DEBUG (maximize logging output)
--prefix=<Unicode> (YKP_SpecInstaller.prefix)
    Default: ''
    Specify a prefix to install to, e.g. an env. The kernelspec will be
    installed in PREFIX/share/jupyter/kernels/
--kernel_name=<Unicode> (YKP_SpecInstaller.kernel_name)
    Default: 'yarnkp_spark_python'
    Install the kernel spec into a directory with this name.
--display_name=<Unicode> (YKP_SpecInstaller.display_name)
    Default: 'Spark Python (YARN Cluster)'
    The display name of the kernel - used by user-facing applications.
--yarn_endpoint=<Unicode> (YKP_SpecInstaller.yarn_endpoint)
    Default: None
    The http url specifying the YARN Resource Manager. Note: If this value is
    NOT set, the YARN library will use the files within the local
    HADOOP_CONFIG_DIR to determine the active resource manager.
    (YKP_YARN_ENDPOINT env var)
--alt_yarn_endpoint=<Unicode> (YKP_SpecInstaller.alt_yarn_endpoint)
    Default: None
    The http url specifying the alternate YARN Resource Manager.  This value
    should be set when YARN Resource Managers are configured for high
    availability.  Note: If both YARN endpoints are NOT set, the YARN library
    will use the files within the local HADOOP_CONFIG_DIR to determine the
    active resource manager. (YKP_ALT_YARN_ENDPOINT env var)
--yarn_endpoint_security_enabled=<Bool> (YKP_SpecInstaller.yarn_endpoint_security_enabled)
    Default: False
    Is YARN Kerberos/SPNEGO Security enabled (True/False).
    (YKP_YARN_ENDPOINT_SECURITY_ENABLED env var)
--language=<Unicode> (YKP_SpecInstaller.language)
    Default: 'Python'
    The language of the underlying kernel.  Must be one of 'Python', 'R', or
    'Scala'.  Default = 'Python'.
--python_root=<Unicode> (YKP_SpecInstaller.python_root)
    Default: '/opt/conda'
    Specify where the root of the python installation resides (parent dir of
    bin/python).
--spark_home=<Unicode> (YKP_SpecInstaller.spark_home)
    Default: '/usr/hdp/current/spark2-client'
    Specify where the spark files can be found.
--spark_init_mode=<Unicode> (YKP_SpecInstaller.spark_init_mode)
    Default: 'lazy'
    Spark context initialization mode.  Must be one of 'lazy', 'eager', or
    'none'.  Default = 'lazy'.
--extra_spark_opts=<Unicode> (YKP_SpecInstaller.extra_spark_opts)
    Default: ''
    Specify additional Spark options.
--extra_dask_opts=<Unicode> (YKP_SpecInstaller.extra_dask_opts)
    Default: ''
    Specify additional Dask options.
--log-level=<Enum> (Application.log_level)
    Default: 30
    Choices: (0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL')
    Set the log level by value or name.
--config=<Unicode> (JupyterApp.config_file)
    Default: ''
    Full path of a config file.

To see all available configurables, use `--help-all`

Examples
--------

    jupyter-yarn-kernelspec install --language=R --spark_home=/usr/local/spark
    jupyter-yarn-kernelspec install --kernel_name=dask_python --dask --yarn_endpoint=http://foo.bar:8088/ws/v1/cluster
    jupyter-yarn-kernelspec install --language=Scala --spark_init_mode='eager'