forked from tpruvot/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
scrypt-jane.cpp
713 lines (589 loc) · 22.1 KB
/
scrypt-jane.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*
* scrypt-jane by Andrew M, https://github.com/floodyberry/scrypt-jane
*
* Public Domain or MIT License, whichever is easier
*
* Adapted to ccminer by tpruvot@github (2015)
*/
#include "miner.h"
#include "scrypt/scrypt-jane.h"
#include "scrypt/code/scrypt-jane-portable.h"
#include "scrypt/code/scrypt-jane-chacha.h"
#include "scrypt/keccak.h"
#include "scrypt/salsa_kernel.h"
#define scrypt_maxN 30 /* (1 << (30 + 1)) = ~2 billion */
#define scrypt_r_32kb 8 /* (1 << 8) = 256 * 2 blocks in a chunk * 64 bytes = Max of 32kb in a chunk */
#define scrypt_maxr scrypt_r_32kb /* 32kb */
#define scrypt_maxp 25 /* (1 << 25) = ~33 million */
// ---------------------------- BEGIN keccak functions ------------------------------------
#define SCRYPT_HASH "Keccak-512"
#define SCRYPT_HASH_DIGEST_SIZE 64
#define SCRYPT_KECCAK_F 1600
#define SCRYPT_KECCAK_C (SCRYPT_HASH_DIGEST_SIZE * 8 * 2) /* 1024 */
#define SCRYPT_KECCAK_R (SCRYPT_KECCAK_F - SCRYPT_KECCAK_C) /* 576 */
#define SCRYPT_HASH_BLOCK_SIZE (SCRYPT_KECCAK_R / 8)
typedef uint8_t scrypt_hash_digest[SCRYPT_HASH_DIGEST_SIZE];
typedef struct scrypt_hash_state_t {
uint64_t state[SCRYPT_KECCAK_F / 64];
uint32_t leftover;
uint8_t buffer[SCRYPT_HASH_BLOCK_SIZE];
} scrypt_hash_state;
static const uint64_t keccak_round_constants[24] = {
0x0000000000000001ull, 0x0000000000008082ull,
0x800000000000808aull, 0x8000000080008000ull,
0x000000000000808bull, 0x0000000080000001ull,
0x8000000080008081ull, 0x8000000000008009ull,
0x000000000000008aull, 0x0000000000000088ull,
0x0000000080008009ull, 0x000000008000000aull,
0x000000008000808bull, 0x800000000000008bull,
0x8000000000008089ull, 0x8000000000008003ull,
0x8000000000008002ull, 0x8000000000000080ull,
0x000000000000800aull, 0x800000008000000aull,
0x8000000080008081ull, 0x8000000000008080ull,
0x0000000080000001ull, 0x8000000080008008ull
};
static void keccak_block(scrypt_hash_state *S, const uint8_t *in)
{
size_t i;
uint64_t *s = S->state, t[5], u[5], v, w;
/* absorb input */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE / 8; i++, in += 8)
s[i] ^= U8TO64_LE(in);
for (i = 0; i < 24; i++) {
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */
u[0] = t[4] ^ ROTL64(t[1], 1);
u[1] = t[0] ^ ROTL64(t[2], 1);
u[2] = t[1] ^ ROTL64(t[3], 1);
u[3] = t[2] ^ ROTL64(t[4], 1);
u[4] = t[3] ^ ROTL64(t[0], 1);
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0];
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1];
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2];
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3];
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4];
/* rho pi: b[..] = rotl(a[..], ..) */
v = s[ 1];
s[ 1] = ROTL64(s[ 6], 44);
s[ 6] = ROTL64(s[ 9], 20);
s[ 9] = ROTL64(s[22], 61);
s[22] = ROTL64(s[14], 39);
s[14] = ROTL64(s[20], 18);
s[20] = ROTL64(s[ 2], 62);
s[ 2] = ROTL64(s[12], 43);
s[12] = ROTL64(s[13], 25);
s[13] = ROTL64(s[19], 8);
s[19] = ROTL64(s[23], 56);
s[23] = ROTL64(s[15], 41);
s[15] = ROTL64(s[ 4], 27);
s[ 4] = ROTL64(s[24], 14);
s[24] = ROTL64(s[21], 2);
s[21] = ROTL64(s[ 8], 55);
s[ 8] = ROTL64(s[16], 45);
s[16] = ROTL64(s[ 5], 36);
s[ 5] = ROTL64(s[ 3], 28);
s[ 3] = ROTL64(s[18], 21);
s[18] = ROTL64(s[17], 15);
s[17] = ROTL64(s[11], 10);
s[11] = ROTL64(s[ 7], 6);
s[ 7] = ROTL64(s[10], 3);
s[10] = ROTL64( v, 1);
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w;
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w;
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w;
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w;
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w;
/* iota: a[0,0] ^= round constant */
s[0] ^= keccak_round_constants[i];
}
}
static void scrypt_hash_init(scrypt_hash_state *S) {
memset(S, 0, sizeof(*S));
}
static void scrypt_hash_update(scrypt_hash_state *S, const uint8_t *in, size_t inlen)
{
size_t want;
/* handle the previous data */
if (S->leftover) {
want = (SCRYPT_HASH_BLOCK_SIZE - S->leftover);
want = (want < inlen) ? want : inlen;
memcpy(S->buffer + S->leftover, in, want);
S->leftover += (uint32_t)want;
if (S->leftover < SCRYPT_HASH_BLOCK_SIZE)
return;
in += want;
inlen -= want;
keccak_block(S, S->buffer);
}
/* handle the current data */
while (inlen >= SCRYPT_HASH_BLOCK_SIZE) {
keccak_block(S, in);
in += SCRYPT_HASH_BLOCK_SIZE;
inlen -= SCRYPT_HASH_BLOCK_SIZE;
}
/* handle leftover data */
S->leftover = (uint32_t)inlen;
if (S->leftover)
memcpy(S->buffer, in, S->leftover);
}
static void scrypt_hash_finish(scrypt_hash_state *S, uint8_t *hash)
{
size_t i;
S->buffer[S->leftover] = 0x01;
memset(S->buffer + (S->leftover + 1), 0, SCRYPT_HASH_BLOCK_SIZE - (S->leftover + 1));
S->buffer[SCRYPT_HASH_BLOCK_SIZE - 1] |= 0x80;
keccak_block(S, S->buffer);
for (i = 0; i < SCRYPT_HASH_DIGEST_SIZE; i += 8) {
U64TO8_LE(&hash[i], S->state[i / 8]);
}
}
// ---------------------------- END keccak functions ------------------------------------
// ---------------------------- BEGIN PBKDF2 functions ------------------------------------
typedef struct scrypt_hmac_state_t {
scrypt_hash_state inner, outer;
} scrypt_hmac_state;
static void scrypt_hash(scrypt_hash_digest hash, const uint8_t *m, size_t mlen)
{
scrypt_hash_state st;
scrypt_hash_init(&st);
scrypt_hash_update(&st, m, mlen);
scrypt_hash_finish(&st, hash);
}
/* hmac */
static void scrypt_hmac_init(scrypt_hmac_state *st, const uint8_t *key, size_t keylen)
{
uint8_t pad[SCRYPT_HASH_BLOCK_SIZE] = {0};
size_t i;
scrypt_hash_init(&st->inner);
scrypt_hash_init(&st->outer);
if (keylen <= SCRYPT_HASH_BLOCK_SIZE) {
/* use the key directly if it's <= blocksize bytes */
memcpy(pad, key, keylen);
} else {
/* if it's > blocksize bytes, hash it */
scrypt_hash(pad, key, keylen);
}
/* inner = (key ^ 0x36) */
/* h(inner || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= 0x36;
scrypt_hash_update(&st->inner, pad, SCRYPT_HASH_BLOCK_SIZE);
/* outer = (key ^ 0x5c) */
/* h(outer || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= (0x5c ^ 0x36);
scrypt_hash_update(&st->outer, pad, SCRYPT_HASH_BLOCK_SIZE);
}
static void scrypt_hmac_update(scrypt_hmac_state *st, const uint8_t *m, size_t mlen)
{
/* h(inner || m...) */
scrypt_hash_update(&st->inner, m, mlen);
}
static void scrypt_hmac_finish(scrypt_hmac_state *st, scrypt_hash_digest mac)
{
/* h(inner || m) */
scrypt_hash_digest innerhash;
scrypt_hash_finish(&st->inner, innerhash);
/* h(outer || h(inner || m)) */
scrypt_hash_update(&st->outer, innerhash, sizeof(innerhash));
scrypt_hash_finish(&st->outer, mac);
}
/*
* Special version where N = 1
* - mikaelh
*/
static void scrypt_pbkdf2_1(const uint8_t *password, size_t password_len,
const uint8_t *salt, size_t salt_len, uint8_t *out, uint64_t bytes)
{
scrypt_hmac_state hmac_pw, hmac_pw_salt, work;
scrypt_hash_digest ti, u;
uint8_t be[4];
uint32_t i, blocks;
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
/* hmac(password, ...) */
scrypt_hmac_init(&hmac_pw, password, password_len);
/* hmac(password, salt...) */
hmac_pw_salt = hmac_pw;
scrypt_hmac_update(&hmac_pw_salt, salt, salt_len);
blocks = ((uint32_t)bytes + (SCRYPT_HASH_DIGEST_SIZE - 1)) / SCRYPT_HASH_DIGEST_SIZE;
for (i = 1; i <= blocks; i++) {
/* U1 = hmac(password, salt || be(i)) */
U32TO8_BE(be, i);
work = hmac_pw_salt;
scrypt_hmac_update(&work, be, 4);
scrypt_hmac_finish(&work, ti);
memcpy(u, ti, sizeof(u));
memcpy(out, ti, (size_t) (bytes > SCRYPT_HASH_DIGEST_SIZE ? SCRYPT_HASH_DIGEST_SIZE : bytes));
out += SCRYPT_HASH_DIGEST_SIZE;
bytes -= SCRYPT_HASH_DIGEST_SIZE;
}
}
// ---------------------------- END PBKDF2 functions ------------------------------------
static void scrypt_fatal_error_default(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(1);
}
static scrypt_fatal_errorfn scrypt_fatal_error = scrypt_fatal_error_default;
void scrypt_set_fatal_error_default(scrypt_fatal_errorfn fn) {
scrypt_fatal_error = fn;
}
typedef struct scrypt_aligned_alloc_t {
uint8_t *mem, *ptr;
} scrypt_aligned_alloc;
#if defined(SCRYPT_TEST_SPEED)
static uint8_t *mem_base = (uint8_t *)0;
static size_t mem_bump = 0;
/* allocations are assumed to be multiples of 64 bytes and total allocations not to exceed ~1.01gb */
static scrypt_aligned_alloc scrypt_alloc(uint64_t size)
{
scrypt_aligned_alloc aa;
if (!mem_base) {
mem_base = (uint8_t *)malloc((1024 * 1024 * 1024) + (1024 * 1024) + (SCRYPT_BLOCK_BYTES - 1));
if (!mem_base)
scrypt_fatal_error("scrypt: out of memory");
mem_base = (uint8_t *)(((size_t)mem_base + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
}
aa.mem = mem_base + mem_bump;
aa.ptr = aa.mem;
mem_bump += (size_t)size;
return aa;
}
static void scrypt_free(scrypt_aligned_alloc *aa)
{
mem_bump = 0;
}
#else
static scrypt_aligned_alloc scrypt_alloc(uint64_t size)
{
static const size_t max_alloc = (size_t)-1;
scrypt_aligned_alloc aa;
size += (SCRYPT_BLOCK_BYTES - 1);
if (size > max_alloc)
scrypt_fatal_error("scrypt: not enough address space on this CPU to allocate required memory");
aa.mem = (uint8_t *)malloc((size_t)size);
aa.ptr = (uint8_t *)(((size_t)aa.mem + (SCRYPT_BLOCK_BYTES - 1)) & ~(SCRYPT_BLOCK_BYTES - 1));
if (!aa.mem)
scrypt_fatal_error("scrypt: out of memory");
return aa;
}
static void scrypt_free(scrypt_aligned_alloc *aa)
{
free(aa->mem);
}
#endif
// yacoin: increasing Nfactor gradually
unsigned char GetNfactor(unsigned int nTimestamp)
{
int l = 0;
unsigned int Nfactor = 0;
// Yacoin defaults
unsigned int Ntimestamp = 1367991200;
unsigned int minN = 4;
unsigned int maxN = 30;
if (strlen(jane_params) > 0) {
if (!strcmp(jane_params, "YAC") || !strcasecmp(jane_params, "Yacoin")) {} // No-Op
//
// NO WARRANTY FOR CORRECTNESS. Look for the int64 nChainStartTime constant
// in the src/main.cpp file of the official wallet clients as well as the
// const unsigned char minNfactor and const unsigned char maxNfactor
//
else if (!strcmp(jane_params, "YBC") || !strcasecmp(jane_params, "YBCoin")) {
// YBCoin: 1372386273, minN: 4, maxN: 30
Ntimestamp = 1372386273; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "ZZC") || !strcasecmp(jane_params, "ZZCoin")) {
// ZcCoin: 1375817223, minN: 12, maxN: 30
Ntimestamp = 1375817223; minN= 12; maxN= 30;
} else if (!strcmp(jane_params, "FEC") || !strcasecmp(jane_params, "FreeCoin")) {
// FreeCoin: 1375801200, minN: 6, maxN: 32
Ntimestamp = 1375801200; minN= 6; maxN= 32;
} else if (!strcmp(jane_params, "ONC") || !strcasecmp(jane_params, "OneCoin")) {
// OneCoin: 1371119462, minN: 6, maxN: 30
Ntimestamp = 1371119462; minN= 6; maxN= 30;
} else if (!strcmp(jane_params, "QQC") || !strcasecmp(jane_params, "QQCoin")) {
// QQCoin: 1387769316, minN: 4, maxN: 30
Ntimestamp = 1387769316; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "GPL") || !strcasecmp(jane_params, "GoldPressedLatinum")) {
// GoldPressedLatinum:1377557832, minN: 4, maxN: 30
Ntimestamp = 1377557832; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "MRC") || !strcasecmp(jane_params, "MicroCoin")) {
// MicroCoin:1389028879, minN: 4, maxN: 30
Ntimestamp = 1389028879; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "APC") || !strcasecmp(jane_params, "AppleCoin")) {
// AppleCoin:1384720832, minN: 4, maxN: 30
Ntimestamp = 1384720832; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "CPR") || !strcasecmp(jane_params, "Copperbars")) {
// Copperbars:1376184687, minN: 4, maxN: 30
Ntimestamp = 1376184687; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "CACH") || !strcasecmp(jane_params, "CacheCoin")) {
// CacheCoin:1388949883, minN: 4, maxN: 30
Ntimestamp = 1388949883; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "UTC") || !strcasecmp(jane_params, "UltraCoin")) {
// MicroCoin:1388361600, minN: 4, maxN: 30
Ntimestamp = 1388361600; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "VEL") || !strcasecmp(jane_params, "VelocityCoin")) {
// VelocityCoin:1387769316, minN: 4, maxN: 30
Ntimestamp = 1387769316; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "ITC") || !strcasecmp(jane_params, "InternetCoin")) {
// InternetCoin:1388385602, minN: 4, maxN: 30
Ntimestamp = 1388385602; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "RAD") || !strcasecmp(jane_params, "RadioactiveCoin")) {
// InternetCoin:1389196388, minN: 4, maxN: 30
Ntimestamp = 1389196388; minN= 4; maxN= 30;
} else if (!strcmp(jane_params, "LEO") || !strcasecmp(jane_params, "LEOCoin")) {
// LEOCoin:1402845776, minN: 4, maxN: 30
Ntimestamp = 1402845776; minN= 4; maxN= 30;
} else {
if (sscanf(jane_params, "%u,%u,%u", &Ntimestamp, &minN, &maxN) != 3)
if (sscanf(jane_params, "%u", &Nfactor) == 1) return Nfactor; // skip bounding against minN, maxN
else applog(LOG_INFO, "Unable to parse scrypt-jane parameters: '%s'. Defaulting to Yacoin.", jane_params);
}
}
// determination based on the constants determined above
if (nTimestamp <= Ntimestamp)
return minN;
unsigned long int s = nTimestamp - Ntimestamp;
while ((s >> 1) > 3) {
l += 1;
s >>= 1;
}
s &= 3;
int n = (l * 170 + s * 25 - 2320) / 100;
if (n < 0) n = 0;
if (n > 255)
printf("GetNfactor(%d) - something wrong(n == %d)\n", nTimestamp, n);
Nfactor = n;
if (Nfactor<minN) return minN;
if (Nfactor>maxN) return maxN;
return Nfactor;
}
static bool init[MAX_GPUS] = { 0 };
// cleanup
void free_scrypt_jane(int thr_id)
{
int dev_id = device_map[thr_id];
if (!init[thr_id])
return;
cudaSetDevice(dev_id);
cudaDeviceSynchronize();
cudaDeviceReset(); // well, simple way to free ;)
init[thr_id] = false;
}
#define bswap_32x4(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) \
| (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
static int s_Nfactor = 0;
int scanhash_scrypt_jane(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done,
unsigned char *scratchbuf, struct timeval *tv_start, struct timeval *tv_end)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
uint32_t N;
if (s_Nfactor == 0 && strlen(jane_params) > 0)
applog(LOG_INFO, "Given scrypt-jane parameters: %s", jane_params);
int Nfactor = GetNfactor(bswap_32x4(pdata[17]));
if (Nfactor > scrypt_maxN) {
scrypt_fatal_error("scrypt: N out of range");
}
N = (1 << (Nfactor + 1));
if (Nfactor != s_Nfactor)
{
opt_nfactor = Nfactor;
applog(LOG_INFO, "N-factor is %d (%d)!", Nfactor, N);
if (s_Nfactor != 0) {
// handle N-factor increase at runtime
// by adjusting the lookup_gap by factor 2
if (s_Nfactor == Nfactor-1)
for (int i=0; i < 8; ++i)
device_lookup_gap[i] *= 2;
}
s_Nfactor = Nfactor;
}
static __thread int throughput = 0;
if(!init[thr_id]) {
int dev_id = device_map[thr_id];
cudaSetDevice(dev_id);
cudaDeviceSynchronize();
cudaDeviceReset();
cudaSetDevice(dev_id);
throughput = cuda_throughput(thr_id);
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
init[thr_id] = true;
}
if(throughput == 0)
return -1;
gettimeofday(tv_start, NULL);
uint32_t *data[2] = { new uint32_t[20*throughput], new uint32_t[20*throughput] };
uint32_t* hash[2] = { cuda_hashbuffer(thr_id,0), cuda_hashbuffer(thr_id,1) };
uint32_t n = pdata[19];
/* byte swap pdata into data[0]/[1] arrays */
for (int k=0; k<2; ++k) {
for(int z=0;z<20;z++) data[k][z] = bswap_32x4(pdata[z]);
for(int i=1;i<throughput;++i) memcpy(&data[k][20*i], &data[k][0], 20*sizeof(uint32_t));
}
if (parallel == 2) prepare_keccak512(thr_id, pdata);
scrypt_aligned_alloc Xbuf[2] = { scrypt_alloc(128 * throughput), scrypt_alloc(128 * throughput) };
scrypt_aligned_alloc Vbuf = scrypt_alloc(N * 128);
scrypt_aligned_alloc Ybuf = scrypt_alloc(128);
uint32_t nonce[2];
uint32_t* cuda_X[2] = { cuda_transferbuffer(thr_id,0), cuda_transferbuffer(thr_id,1) };
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
int cur = 0, nxt = 1;
int iteration = 0;
do {
nonce[nxt] = n;
if (parallel < 2)
{
// half of cpu
for(int i=0;i<throughput;++i) {
uint32_t tmp_nonce = n++;
data[nxt][20*i + 19] = bswap_32x4(tmp_nonce);
}
for(int i=0;i<throughput;++i)
scrypt_pbkdf2_1((unsigned char *)&data[nxt][20*i], 80, (unsigned char *)&data[nxt][20*i], 80, Xbuf[nxt].ptr + 128 * i, 128);
memcpy(cuda_X[nxt], Xbuf[nxt].ptr, 128 * throughput);
cuda_scrypt_serialize(thr_id, nxt);
cuda_scrypt_HtoD(thr_id, cuda_X[nxt], nxt);
cuda_scrypt_core(thr_id, nxt, N);
cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, cuda_X[nxt], nxt, false);
//cuda_scrypt_flush(thr_id, nxt);
if(!cuda_scrypt_sync(thr_id, nxt)) {
break;
}
memcpy(Xbuf[cur].ptr, cuda_X[cur], 128 * throughput);
for(int i=0;i<throughput;++i)
scrypt_pbkdf2_1((unsigned char *)&data[cur][20*i], 80, Xbuf[cur].ptr + 128 * i, 128, (unsigned char *)(&hash[cur][8*i]), 32);
#define VERIFY_ALL 0
#if VERIFY_ALL
{
/* 2: X = ROMix(X) */
for(int i=0;i<throughput;++i)
scrypt_ROMix_1((scrypt_mix_word_t *)(Xbuf[cur].ptr + 128 * i), (scrypt_mix_word_t *)Ybuf.ptr, (scrypt_mix_word_t *)Vbuf.ptr, N);
unsigned int err = 0;
for(int i=0;i<throughput;++i) {
unsigned char *ref = (Xbuf[cur].ptr + 128 * i);
unsigned char *dat = (unsigned char*)(cuda_X[cur] + 32 * i);
if (memcmp(ref, dat, 128) != 0)
{
err++;
#if 0
uint32_t *ref32 = (uint32_t*) ref;
uint32_t *dat32 = (uint32_t*) dat;
for (int j=0; j<32; ++j) {
if (ref32[j] != dat32[j])
fprintf(stderr, "ref32[i=%d][j=%d] = $%08x / $%08x\n", i, j, ref32[j], dat32[j]);
}
#endif
}
}
if (err > 0) fprintf(stderr, "%d out of %d hashes differ.\n", err, throughput);
}
#endif
} else {
// all on gpu
n += throughput;
if (opt_debug && (iteration % 64 == 0))
applog(LOG_DEBUG, "GPU #%d: n=%x", device_map[thr_id], n);
cuda_scrypt_serialize(thr_id, nxt);
pre_keccak512(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_core(thr_id, nxt, N);
//cuda_scrypt_flush(thr_id, nxt);
if (!cuda_scrypt_sync(thr_id, nxt)) {
break;
}
post_keccak512(thr_id, nxt, nonce[nxt], throughput);
cuda_scrypt_done(thr_id, nxt);
cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true);
//cuda_scrypt_flush(thr_id, nxt); // made by cuda_scrypt_sync
if (!cuda_scrypt_sync(thr_id, nxt)) {
break;
}
}
for (int i=0; iteration > 0 && i<throughput; i++)
{
if (hash[cur][8*i+7] <= Htarg && fulltest(&hash[cur][8*i], ptarget))
{
uint32_t _ALIGN(64) thash[8], tdata[20];
uint32_t tmp_nonce = nonce[cur] + i;
for(int z=0;z<19;z++)
tdata[z] = bswap_32x4(pdata[z]);
tdata[19] = bswap_32x4(tmp_nonce);
scrypt_pbkdf2_1((unsigned char *)tdata, 80, (unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128);
scrypt_ROMix_1((scrypt_mix_word_t *)(Xbuf[cur].ptr + 128 * i), (scrypt_mix_word_t *)(Ybuf.ptr), (scrypt_mix_word_t *)(Vbuf.ptr), N);
scrypt_pbkdf2_1((unsigned char *)tdata, 80, Xbuf[cur].ptr + 128 * i, 128, (unsigned char *)thash, 32);
if (memcmp(thash, &hash[cur][8*i], 32) == 0)
{
work_set_target_ratio(work, thash);
*hashes_done = n - pdata[19];
pdata[19] = tmp_nonce;
scrypt_free(&Vbuf);
scrypt_free(&Ybuf);
scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]);
delete[] data[0]; delete[] data[1];
gettimeofday(tv_end, NULL);
return 1;
} else {
gpulog(LOG_WARNING, thr_id, "result does not validate on CPU! (i=%d, s=%d)", i, cur);
}
}
}
cur = (cur+1)&1;
nxt = (nxt+1)&1;
++iteration;
} while (n <= max_nonce && !work_restart[thr_id].restart);
scrypt_free(&Vbuf);
scrypt_free(&Ybuf);
scrypt_free(&Xbuf[0]); scrypt_free(&Xbuf[1]);
delete[] data[0]; delete[] data[1];
*hashes_done = n - pdata[19];
pdata[19] = n;
gettimeofday(tv_end, NULL);
return 0;
}
static void scrypt_jane_hash_1_1(const uchar *password, size_t password_len, const uchar*salt, size_t salt_len, uint32_t N,
uchar *out, uint32_t bytes, uint8_t *X, uint8_t *Y, uint8_t *V)
{
uint32_t chunk_bytes, i;
const uint32_t p = SCRYPT_P;
#if !defined(SCRYPT_CHOOSE_COMPILETIME)
scrypt_ROMixfn scrypt_ROMix = scrypt_getROMix();
#endif
chunk_bytes = SCRYPT_BLOCK_BYTES * SCRYPT_R * 2;
/* 1: X = PBKDF2(password, salt) */
scrypt_pbkdf2_1(password, password_len, salt, salt_len, X, chunk_bytes * p);
/* 2: X = ROMix(X) */
for (i = 0; i < p; i++)
scrypt_ROMix_1((scrypt_mix_word_t *)(X + (chunk_bytes * i)), (scrypt_mix_word_t *)Y, (scrypt_mix_word_t *)V, N);
/* 3: Out = PBKDF2(password, X) */
scrypt_pbkdf2_1(password, password_len, X, chunk_bytes * p, out, (size_t) bytes);
#ifdef SCRYPT_PREVENT_STATE_LEAK
/* This is an unnecessary security feature - mikaelh */
scrypt_ensure_zero(Y, (p + 1) * chunk_bytes);
#endif
}
/* for cpu hash test */
void scryptjane_hash(void* output, const void* input)
{
uint32_t Nsize = 1UL << (opt_nfactor + 1);
uint64_t chunk_bytes;
uint8_t *X, *Y;
scrypt_aligned_alloc YX, V;
chunk_bytes = 2ULL * SCRYPT_BLOCK_BYTES * SCRYPT_R;
V = scrypt_alloc(Nsize * chunk_bytes);
YX = scrypt_alloc((SCRYPT_P + 1) * chunk_bytes);
memset(V.ptr, 0, (size_t) (Nsize * chunk_bytes));
Y = YX.ptr;
X = Y + chunk_bytes;
scrypt_jane_hash_1_1((uchar*)input, 80, (uchar*)input, 80, (uint32_t) Nsize, (uchar*)output, 32, X, Y, V.ptr);
scrypt_free(&V);
scrypt_free(&YX);
}