diff --git a/burnman/utils/misc.py b/burnman/utils/misc.py index 6b7a7baa..c7522948 100644 --- a/burnman/utils/misc.py +++ b/burnman/utils/misc.py @@ -70,15 +70,31 @@ def flatten(arr): ) -def pretty_print_values(popt, pcov, params, extra_decimal_places=0): +def pretty_string_values( + popt, pcov, extra_decimal_places=0, combine_value_and_sigma=False +): """ Takes a numpy array of parameters, the corresponding covariance matrix - and a set of parameter names and prints the parameters and - principal 1-s.d.uncertainties (np.sqrt(pcov[i][i])) - in a nice text based format. + and a set of parameter names and returns the scaled variables and + principal 1-s.d.uncertainties (np.sqrt(pcov[i][i])) and scaling factor + as three separate lists of strings. + + :param popt: Parameter values + :type popt: numpy array + :param pcov: Variance-covariance matrix + :type pcov: 2D numpy array + :param extra_decimal_places: extra precision for values, defaults to 0 + :type extra_decimal_places: int, optional + :param combine_value_and_sigma: give values in value(sigma) format, defaults to False + :type combine_value_and_sigma: bool, optional + :return: values, uncertainties and the scaling factors + :rtype: tuple of 3 lists """ - for i, p in enumerate(params): - p_rnd = round_to_n(popt[i], np.sqrt(pcov[i][i]), 1 + extra_decimal_places) + pval = [] + psig = [] + pscale = [] + for i, p in enumerate(popt): + p_rnd = round_to_n(p, np.sqrt(pcov[i][i]), 1 + extra_decimal_places) c_rnd = round_to_n( np.sqrt(pcov[i][i]), np.sqrt(pcov[i][i]), 1 + extra_decimal_places ) @@ -90,11 +106,31 @@ def pretty_print_values(popt, pcov, params, extra_decimal_places=0): scale = np.power(10.0, p_expnt) nd = p_expnt - np.floor(np.log10(np.abs(c_rnd))) + extra_decimal_places - print( - "{0:s}: ({1:{4}{5}f} +/- {2:{4}{5}f}) x {3:.0e}".format( - p, p_rnd / scale, c_rnd / scale, scale, 0, (nd) / 10.0 - ) - ) + pval.append(f"{p_rnd / scale:0{nd / 10.0}f}") + if combine_value_and_sigma: + pval[-1] = f"{pval[-1]}({int(c_rnd / scale * np.power(10, nd))})" + psig.append(f"{c_rnd / scale:0{nd / 10.0}f}") + pscale.append(f"{scale:.0e}") + return (pval, psig, pscale) + + +def pretty_print_values(popt, pcov, params, extra_decimal_places=0): + """ + Takes a numpy array of parameters, the corresponding covariance matrix + and a set of parameter names and prints the scaled variables and + principal 1-s.d.uncertainties (np.sqrt(pcov[i][i])) and scaling factor + in an easy to read format. + + :param popt: Parameter values + :type popt: numpy array + :param pcov: Variance-covariance matrix + :type pcov: 2D numpy array + :param extra_decimal_places: extra precision for values, defaults to 0 + :type extra_decimal_places: int, optional + """ + pval, psig, pscale = pretty_string_values(popt, pcov, extra_decimal_places) + for i, p in enumerate(params): + print(f"{p:s}: ({pval[i]} +/- {psig[i]}) x {pscale[i]}") def pretty_print_table(table, use_tabs=False):