generated from georgia-tech-db/license-plate-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocr_extractor.py
93 lines (77 loc) · 2.69 KB
/
ocr_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# coding=utf-8
# Copyright 2018-2022 EVA
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import easyocr
import numpy as np
import pandas as pd
from eva.udfs.abstract.abstract_udf import AbstractClassifierUDF
from eva.udfs.gpu_compatible import GPUCompatible
class OCRExtractor(AbstractClassifierUDF, GPUCompatible):
"""
Arguments:
threshold (float): Threshold for classifier confidence score
"""
def to_device(self, device: str):
"""
:param device:
:return:
"""
self.model = easyocr.Reader(["en"], gpu="cuda:{}".format(device), verbose=False)
return self
def setup(self, threshold=0.85):
self.threshold = threshold
self.model = easyocr.Reader(["en"], verbose=False)
@property
def name(self) -> str:
return "OCRExtractor"
@property
def labels(self) -> List[str]:
"""
Empty as there are no labels required for
optical character recognition
"""
return
def forward(self, frames: np.ndarray) -> pd.DataFrame:
"""
Performs predictions on input frames
Arguments:
frames (tensor): Frames on which OCR needs
to be performed
Returns:
tuple containing OCR labels (List[List[str]]),
predicted_boxes (List[List[BoundingBox]]),
predicted_scores (List[List[float]])
"""
frames_list = frames.values.tolist()
frames = np.array(frames_list)
# Get detections
detections_in_frames = self.model.readtext_batched(np.vstack(frames))
outcome = []
for i in range(0, frames.shape[0]):
labels = []
bboxes = []
scores = []
for detection in detections_in_frames[i]:
labels.append(detection[1])
bboxes.append(detection[0])
scores.append(detection[2])
outcome.append(
{
"labels": list(labels),
"bboxes": list(bboxes),
"scores": list(scores),
}
)
return pd.DataFrame(outcome, columns=["labels", "bboxes", "scores"])