forked from yangxy/GPEN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_colorization.py
executable file
·48 lines (35 loc) · 1.48 KB
/
face_colorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
'''
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
@author: yangxy ([email protected])
'''
import os
import cv2
import glob
import time
import numpy as np
from PIL import Image
import __init_paths
from face_model.face_gan import FaceGAN
class FaceColorization(object):
def __init__(self, base_dir='./', size=1024, model=None, channel_multiplier=2):
self.facegan = FaceGAN(base_dir, size, model, channel_multiplier)
# make sure the face image is well aligned. Please refer to face_enhancement.py
def process(self, gray):
# colorize the face
out = self.facegan.process(gray)
return out
if __name__=='__main__':
model = {'name':'GPEN-1024-Color', 'size':1024}
indir = 'examples/grays'
outdir = 'examples/couts'
os.makedirs(outdir, exist_ok=True)
facecolorizer = FaceColorization(size=model['size'], model=model['name'], channel_multiplier=2)
files = sorted(glob.glob(os.path.join(indir, '*.*g')))
for n, file in enumerate(files[:]):
filename = os.path.basename(file)
grayf = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
grayf = cv2.cvtColor(grayf, cv2.COLOR_GRAY2BGR) # channel: 1->3
colorf = facecolorizer.process(grayf)
grayf = cv2.resize(grayf, colorf.shape[:2])
cv2.imwrite(os.path.join(outdir, '.'.join(filename.split('.')[:-1])+'.jpg'), np.hstack((grayf, colorf)))
if n%10==0: print(n, file)