forked from atiselsts/uniswap-v3-liquidity-math
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuniswap-v3-liquidity-math.py
executable file
·260 lines (208 loc) · 6.95 KB
/
uniswap-v3-liquidity-math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
"""
See the technical note "Liquidity Math in Uniswap v3" and the Uniswap v3 whitepaper
for the description of the purpose of this code.
"""
#
# Liquidity math adapted from https://github.com/Uniswap/uniswap-v3-periphery/blob/main/contracts/libraries/LiquidityAmounts.sol
#
def get_liquidity_0(x, sa, sb):
return x * sa * sb / (sb - sa)
def get_liquidity_1(y, sa, sb):
return y / (sb - sa)
def get_liquidity(x, y, sp, sa, sb):
if sp <= sa:
liquidity = get_liquidity_0(x, sa, sb)
elif sp < sb:
liquidity0 = get_liquidity_0(x, sp, sb)
liquidity1 = get_liquidity_1(y, sa, sp)
liquidity = min(liquidity0, liquidity1)
else:
liquidity = get_liquidity_1(y, sa, sb)
return liquidity
#
# Calculate x and y given liquidity and price range
#
def calculate_x(L, sp, sa, sb):
sp = max(min(sp, sb), sa) # if the price is outside the range, use the range endpoints instead
return L * (sb - sp) / (sp * sb)
def calculate_y(L, sp, sa, sb):
sp = max(min(sp, sb), sa) # if the price is outside the range, use the range endpoints instead
return L * (sp - sa)
#
# Two different ways how to calculate p_a. calculate_a1() uses liquidity as an input, calculate_a2() does not.
#
def calculate_a1(L, sp, sb, x, y):
# https://www.wolframalpha.com/input/?i=solve+L+%3D+y+%2F+%28sqrt%28P%29+-+a%29+for+a
# sqrt(a) = sqrt(P) - y / L
return (sp - y / L) ** 2
def calculate_a2(sp, sb, x, y):
# https://www.wolframalpha.com/input/?i=solve+++x+sqrt%28P%29+sqrt%28b%29+%2F+%28sqrt%28b%29++-+sqrt%28P%29%29+%3D+y+%2F+%28sqrt%28P%29+-+a%29%2C+for+a
# sqrt(a) = (y/sqrt(b) + sqrt(P) x - y/sqrt(P))/x
# simplify:
# sqrt(a) = y/(sqrt(b) x) + sqrt(P) - y/(sqrt(P) x)
sa = y / (sb * x) + sp - y / (sp * x)
return sa ** 2
#
# Two different ways how to calculate p_b. calculate_b1() uses liquidity as an input, calculate_b2() does not.
#
def calculate_b1(L, sp, sa, x, y):
# https://www.wolframalpha.com/input/?i=solve+L+%3D+x+sqrt%28P%29+sqrt%28b%29+%2F+%28sqrt%28b%29+-+sqrt%28P%29%29+for+b
# sqrt(b) = (L sqrt(P)) / (L - sqrt(P) x)
return ((L * sp) / (L - sp * x)) ** 2
def calculate_b2(sp, sa, x, y):
# find the square root of b:
# https://www.wolframalpha.com/input/?i=solve+++x+sqrt%28P%29+b+%2F+%28b++-+sqrt%28P%29%29+%3D+y+%2F+%28sqrt%28P%29+-+sqrt%28a%29%29%2C+for+b
# sqrt(b) = (sqrt(P) y)/(sqrt(a) sqrt(P) x - P x + y)
P = sp ** 2
return (sp * y / ((sa * sp - P) * x + y)) ** 2
#
# Calculating c and d
#
def calculate_c(p, d, x, y):
return y / ((d - 1) * p * x + y)
def calculate_d(p, c, x, y):
return 1 + y * (1 - c) / (c * p * x)
#
# Test a known good combination of values against the functions provided above.
#
# Some errors are expected because:
# -- the floating point math is meant for simplicity, not accurate calculations!
# -- ticks and tick ranges are ignored for simplicity
# -- the test values taken from Uniswap v3 UI and are approximate
#
def test(x, y, p, a, b):
sp = p ** 0.5
sa = a ** 0.5
sb = b ** 0.5
L = get_liquidity(x, y, sp, sa, sb)
print("L: {:.2f}".format(L))
ia = calculate_a1(L, sp, sb, x, y)
error = 100.0 * (1 - ia / a)
print("a: {:.2f} vs {:.2f}, error {:.6f}%".format(a, ia, error))
ia = calculate_a2(sp, sb, x, y)
error = 100.0 * (1 - ia / a)
print("a: {:.2f} vs {:.2f}, error {:.6f}%".format(a, ia, error))
ib = calculate_b1(L, sp, sa, x, y)
error = 100.0 * (1 - ib / b)
print("b: {:.2f} vs {:.2f}, error {:.6f}%".format(b, ib, error))
ib = calculate_b2(sp, sa, x, y)
error = 100.0 * (1 - ib / b)
print("b: {:.2f} vs {:.2f}, error {:.6f}%".format(b, ib, error))
c = sb / sp
d = sa / sp
ic = calculate_c(p, d, x, y)
error = 100.0 * (1 - ic / c)
print("c^2: {:.2f} vs {:.2f}, error {:.6f}%".format(c**2, ic**2, error))
id = calculate_d(p, c, x, y)
error = 100.0 * (1 - id**2 / d**2)
print("d^2: {:.2f} vs {:.2f}, error {:.6f}%".format(d**2, id**2, error))
ix = calculate_x(L, sp, sa, sb)
error = 100.0 * (1 - ix / x)
print("x: {:.2f} vs {:.2f}, error {:.6f}%".format(x, ix, error))
iy = calculate_y(L, sp, sa, sb)
error = 100.0 * (1 - iy / y)
print("y: {:.2f} vs {:.2f}, error {:.6f}%".format(y, iy, error))
print("")
def test_1():
print("test case 1")
p = 20.0
a = 19.027
b = 25.993
x = 1
y = 4
test(x, y, p, a, b)
def test_2():
print("test case 2")
p = 3227.02
a = 1626.3
b = 4846.3
x = 1
y = 5096.06
test(x, y, p, a, b)
def tests():
test_1()
test_2()
#
# Example 1 from the technical note
#
def example_1():
print("Example 1: how much of USDC I need when providing 2 ETH at this price and range?")
p = 2000
a = 1500
b = 2500
x = 2
sp = p ** 0.5
sa = a ** 0.5
sb = b ** 0.5
L = get_liquidity_0(x, sp, sb)
y = calculate_y(L, sp, sa, sb)
print("amount of USDC y={:.2f}".format(y))
# demonstrate that with the calculated y value, the given range is correct
c = sb / sp
d = sa / sp
ic = calculate_c(p, d, x, y)
id = calculate_d(p, c, x, y)
C = ic ** 2
D = id ** 2
print("p_a={:.2f} ({:.2f}% of P), p_b={:.2f} ({:.2f}% of P)".format(
D * p, D * 100, C * p, C * 100))
print("")
#
# Example 2 from the technical note
#
def example_2():
print("Example 2: I have 2 ETH and 4000 USDC, range top set to 3000 USDC. What's the bottom of the range?")
p = 2000
b = 3000
x = 2
y = 4000
sp = p ** 0.5
sb = b ** 0.5
a = calculate_a2(sp, sb, x, y)
print("lower bound of the price p_a={:.2f}".format(a))
print("")
#
# Example 3 from the technical note
#
def example_3():
print("Example 3: Using the position created in Example 2, what are asset balances at 2500 USDC per ETH?")
p = 2000
a = 1333.33
b = 3000
x = 2
y = 4000
sp = p ** 0.5
sa = a ** 0.5
sb = b ** 0.5
# calculate the initial liquidity
L = get_liquidity(x, y, sp, sa, sb)
P1 = 2500
sp1 = P1 ** 0.5
x1 = calculate_x(L, sp1, sa, sb)
y1 = calculate_y(L, sp1, sa, sb)
print("Amount of ETH x={:.2f} amount of USDC y={:.2f}".format(x1, y1))
# alternative way, directly based on the whitepaper
# this delta math only works if the price is in the range (including at its endpoints),
# so limit the square roots of prices to the range first
sp = max(min(sp, sb), sa)
sp1 = max(min(sp1, sb), sa)
delta_p = sp1 - sp
delta_inv_p = 1/sp1 - 1/sp
delta_x = delta_inv_p * L
delta_y = delta_p * L
x1 = x + delta_x
y1 = y + delta_y
print("delta_x={:.2f} delta_y={:.2f}".format(delta_x, delta_y))
print("Amount of ETH x={:.2f} amount of USDC y={:.2f}".format(x1, y1))
def examples():
example_1()
example_2()
example_3()
def main():
# test with some values taken from Uniswap UI
tests()
# demonstrate the examples given in the paper
examples()
if __name__ == "__main__":
main()