-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom pictures get and save pose_xyz.py
62 lines (49 loc) · 2.25 KB
/
random pictures get and save pose_xyz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import airsim
import os
import numpy as np
import pandas as pd
# 连接到AirSim模拟器
client = airsim.MultirotorClient()
client.confirmConnection()
# 获取图像路径
folder_path = "E:/FunctionMethod/airsim_images"
# 保存位姿信息的空DataFrame
poses_df = pd.DataFrame(columns=['index', 'x', 'y', 'z'])
# 设置随机采样的范围和数量
num_samples = 10 # 需要采样的数量
x_min, x_max, y_min, y_max, z_min, z_max = -2, 2, -2, 2, -4, -0.5 # 采样范围
# 相机列表
camera_list = ["0", "1", "2", "3", "4"]
# 随机采样并保存图像和位姿信息
poses_list = []
for i in range(num_samples):
# 随机生成目标位置,并设置姿态朝向正向
x = np.random.uniform(x_min, x_max)
y = np.random.uniform(y_min, y_max)
z = np.random.uniform(z_min, z_max)
pose = airsim.Pose(airsim.Vector3r(x, y, z), airsim.to_quaternion(0, 0, 0))
poses_list.append({'index': i, 'x': x, 'y': y, 'z': z})
# 移动到目标位置
client.simSetVehiclePose(pose, True)
airsim.time.sleep(1.0)
# 获取相机图像
responses = client.simGetImages([airsim.ImageRequest("1", airsim.ImageType.Scene, False, False)])
img_raw = responses[0]
# 遍历相机列表,获取每个相机的图像
# for j, camera_name in enumerate(camera_list):
# # 获取相机图像
# responses = client.simGetImages([airsim.ImageRequest(camera_name, airsim.ImageType.Scene, False, False)])
# img_raw = responses[0]
# 将字节流转换为PIL的Image对象
img1d = np.frombuffer(img_raw.image_data_uint8, dtype=np.uint8)
img_rgb = img1d.reshape(img_raw.height, img_raw.width, 3)
img_rgb1 = np.flipud(img_rgb)
# 保存PNG格式的图像
# img_filename = "pose_{0}_x_{1:.2f}_y_{2:.2f}_z_{3:.2f}.png".format(i, x, y, z)
img_filename = "pose_{0}_x_{1:.2f}_y_{2:.2f}_z_{3:.2f}.png".format(i, x, y, z)
img_filepath = os.path.join(folder_path, img_filename)
airsim.write_png(os.path.normpath(img_filepath), img_rgb1)
print("全部图像和位姿信息均已保存到文件夹:", folder_path)
# 将位姿信息保存到csv文件中
poses_df = pd.DataFrame(poses_list)
poses_df.to_csv(os.path.join(folder_path, 'poses.csv'), index=False)