forked from AnswerDotAI/fsdp_qlora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofile.sh
executable file
·51 lines (49 loc) · 1.34 KB
/
profile.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#See PROFILING.md for documentation
# Run profiler contiguously on a 5-step cycle: 4 warmup steps and 1 active (recording) step.
python train.py \
--model_name "hf-internal-testing/tiny-random-LlamaForCausalLM" \
--gradient_accumulation_steps 2 \
--batch_size 1 \
--context_length 256 \
--num_epochs 1 \
--sharding_strategy full_shard \
--precision bf16 \
--train_type qlora \
--use_gradient_checkpointing false \
--use_cpu_offload false \
--log_to stdout \
--dataset dummy \
--profile true \
--export_trace true \
--export_memory_timeline false \
--with_stack true \
--max_steps 20 \
--repeat 0 \
--warmup_steps 4 \
--active_steps 1 \
--profiling_frequency 5 \
--profiling_output llama-test
# Run for 1 cycle then stop profiling
# python train.py \
# --model_name "hf-internal-testing/tiny-random-LlamaForCausalLM" \
# --gradient_accumulation_steps 2 \
# --batch_size 1 \
# --context_length 256 \
# --num_epochs 1 \
# --sharding_strategy full_shard \
# --precision bf16 \
# --train_type qlora \
# --use_gradient_checkpointing false \
# --use_cpu_offload false \
# --log_to stdout \
# --dataset dummy \
# --profile true \
# --export_trace true \
# --export_memory_timeline true \
# --with_stack true \
# --num_epochs 1 \
# --max_steps 20 \
# --repeat 1 \
# --warmup_steps 1 \
# --active_steps 4 \
# --profiling_output llama-test2