-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolutions.py
28 lines (22 loc) · 1.34 KB
/
solutions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
import pandas as pd
def EuropeanOptionMC(forward, strike, discount_factor, time_to_maturity, volatility, number_of_samples, flag):
standar_normal = np.random.randn(number_of_samples, 1)
asset_at_maturity = forward * np.exp( -0.5*volatility**2*time_to_maturity + volatility*np.sqrt(time_to_maturity)*standar_normal )
if flag == 1:
simulated_option_price = discount_factor*(asset_at_maturity - strike).clip(0, np.inf)
else:
simulated_option_price = discount_factor*(strike - asset_at_maturity).clip(0, np.inf)
return np.mean(simulated_option_price)
def ReadSwapRates(file, sheet, fromRow, numberOfRows, columnRange):
swaprates = pd.read_excel(file, sheet_name = sheet, index_col = 0, skiprows = fromRow, usecols = columnRange)
return swaprates[:numberOfRows]
def ExtractDatesAndMidRates(swap_rates):
bids = np.array(swap_rates['BID'])
asks = np.array(swap_rates['ASK'])
return swap_rates.axes[0].tolist(), 0.5*(bids + asks)
def CalculateEmpiricalSurvivalProbabilities(number_of_samples, lambdas, last_year):
uniforms = np.random.rand(number_of_samples, 1)
default_years = np.floor(-1/lambdas*np.log(uniforms))
defaults_by_year = [ np.count_nonzero(default_years == n) for n in np.arange(0, last_year )]
return (number_of_samples - np.cumsum(defaults_by_year))/number_of_samples