forked from xiumingzhang/GenRe-ShapeHD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
214 lines (195 loc) · 6.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys
import os
import time
import pandas as pd
import torch
from options import options_train
import datasets
import models
from loggers import loggers
from util.util_print import str_error, str_stage, str_verbose, str_warning
from util import util_loadlib as loadlib
###################################################
print(str_stage, "Parsing arguments")
opt, unique_opt_params = options_train.parse()
# Get all parse done, including subparsers
print(opt)
###################################################
print(str_stage, "Setting device")
if opt.gpu == '-1':
device = torch.device('cpu')
else:
loadlib.set_gpu(opt.gpu)
device = torch.device('cuda')
if opt.manual_seed is not None:
loadlib.set_manual_seed(opt.manual_seed)
###################################################
print(str_stage, "Setting up logging directory")
exprdir = '{}_{}_{}'.format(opt.net, opt.dataset, opt.lr)
exprdir += ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
logdir = os.path.join(opt.logdir, exprdir, str(opt.expr_id))
if opt.resume == 0:
if os.path.isdir(logdir):
if opt.expr_id <= 0:
print(
str_warning, (
"Will remove Experiment %d at\n\t%s\n"
"Do you want to continue? (y/n)"
) % (opt.expr_id, logdir)
)
need_input = True
while need_input:
response = input().lower()
if response in ('y', 'n'):
need_input = False
if response == 'n':
print(str_stage, "User decides to quit")
sys.exit()
os.system('rm -rf ' + logdir)
else:
raise ValueError(str_error +
" Refuse to remove positive expr_id")
os.system('mkdir -p ' + logdir)
else:
assert os.path.isdir(logdir)
opt_f_old = os.path.join(logdir, 'opt.pt')
opt = options_train.overwrite(opt, opt_f_old, unique_opt_params)
# Save opt
torch.save(vars(opt), os.path.join(logdir, 'opt.pt'))
with open(os.path.join(logdir, 'opt.txt'), 'w') as fout:
for k, v in vars(opt).items():
fout.write('%20s\t%-20s\n' % (k, v))
opt.full_logdir = logdir
print(str_verbose, "Logging directory set to: %s" % logdir)
###################################################
print(str_stage, "Setting up loggers")
if opt.resume != 0 and os.path.isfile(os.path.join(logdir, 'best.pt')):
try:
prev_best_data = torch.load(os.path.join(logdir, 'best.pt'))
prev_best = prev_best_data['loss_eval']
del prev_best_data
except KeyError:
prev_best = None
else:
prev_best = None
best_model_logger = loggers.ModelSaveLogger(
os.path.join(logdir, 'best.pt'),
period=1,
save_optimizer=True,
save_best=True,
prev_best=prev_best
)
logger_list = [
loggers.TerminateOnNaN(),
loggers.ProgbarLogger(allow_unused_fields='all'),
loggers.CsvLogger(
os.path.join(logdir, 'epoch_loss.csv'),
allow_unused_fields='all'
),
loggers.ModelSaveLogger(
os.path.join(logdir, 'nets', '{epoch:04d}.pt'),
period=opt.save_net,
save_optimizer=opt.save_net_opt
),
loggers.ModelSaveLogger(
os.path.join(logdir, 'checkpoint.pt'),
period=1,
save_optimizer=True
),
best_model_logger,
]
if opt.log_batch:
logger_list.append(
loggers.BatchCsvLogger(
os.path.join(logdir, 'batch_loss.csv'),
allow_unused_fields='all'
)
)
if opt.tensorboard:
tf_logdir = os.path.join(
opt.logdir, 'tensorboard', exprdir, str(opt.expr_id))
if os.path.isdir(tf_logdir) and opt.resume == 0:
os.system('rm -r ' + tf_logdir) # remove previous tensorboard log if overwriting
if not os.path.isdir(os.path.join(logdir, 'tensorboard')):
os.symlink(tf_logdir, os.path.join(logdir, 'tensorboard'))
logger_list.append(
loggers.TensorBoardLogger(
tf_logdir,
allow_unused_fields='all'
)
)
logger = loggers.ComposeLogger(logger_list)
###################################################
print(str_stage, "Setting up models")
Model = models.get_model(opt.net)
model = Model(opt, logger)
model.to(device)
print(model)
print("# model parameters: {:,d}".format(model.num_parameters()))
initial_epoch = 1
if opt.resume != 0:
if opt.resume == -1:
net_filename = os.path.join(logdir, 'checkpoint.pt')
elif opt.resume == -2:
net_filename = os.path.join(logdir, 'best.pt')
else:
net_filename = os.path.join(
logdir, 'nets', '{epoch:04d}.pt').format(epoch=opt.resume)
if not os.path.isfile(net_filename):
print(str_warning, ("Network file not found for opt.resume=%d. "
"Starting from scratch") % opt.resume)
else:
additional_values = model.load_state_dict(net_filename, load_optimizer='auto')
try:
initial_epoch += additional_values['epoch']
except KeyError as err:
# Old saved model does not have epoch as additional values
epoch_loss_csv = os.path.join(logdir, 'epoch_loss.csv')
if opt.resume == -1:
try:
initial_epoch += pd.read_csv(epoch_loss_csv)['epoch'].max()
except pd.errors.ParserError:
with open(epoch_loss_csv, 'r') as f:
lines = f.readlines()
initial_epoch += max([int(l.split(',')[0]) for l in lines[1:]])
else:
initial_epoch += opt.resume
###################################################
print(str_stage, "Setting up data loaders")
start_time = time.time()
dataset = datasets.get_dataset(opt.dataset)
dataset_train = dataset(opt, mode='train', model=model)
dataset_vali = dataset(opt, mode='vali', model=model)
dataloader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.workers,
pin_memory=True,
drop_last=True
)
dataloader_vali = torch.utils.data.DataLoader(
dataset_vali,
batch_size=opt.batch_size,
num_workers=opt.workers,
pin_memory=True,
drop_last=True,
shuffle=False
)
print(str_verbose, "Time spent in data IO initialization: %.2fs" %
(time.time() - start_time))
print(str_verbose, "# training points: " + str(len(dataset_train)))
print(str_verbose, "# training batches per epoch: " + str(len(dataloader_train)))
print(str_verbose, "# test batches: " + str(len(dataloader_vali)))
###################################################
if opt.epoch > 0:
print(str_stage, "Training")
model.train_epoch(
dataloader_train,
dataloader_eval=dataloader_vali,
max_batches_per_train=opt.epoch_batches,
epochs=opt.epoch,
initial_epoch=initial_epoch,
max_batches_per_eval=opt.eval_batches,
eval_at_start=opt.eval_at_start
)