-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathn_pends_minimal.py
37 lines (28 loc) · 2.19 KB
/
n_pends_minimal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from sympy import symbols # Import the symbols function
from sympy.physics.mechanics import * # Import mechanics classes
n = 4 # Number of links in N-pendulum
q = dynamicsymbols('q:' + str(n)) # Generalized coordinates
u = dynamicsymbols('u:' + str(n)) # Generalized speeds
m = symbols('m:' + str(n)) # Mass of each link
l = symbols('l:' + str(n)) # Length of each link
g, t = symbols('g t') # gravity and time symbols
A = ReferenceFrame('A') # Inertial reference frame
frames = [] # List to hold n link frames
P = Point('P') # Hinge point of top link
P.set_vel(A, 0) # Set velocity of P in A to be 0
particles = [] # List to hold N particles
forces = [] # List to hold N applied forces
kin_odes = [] # List to hold kinematic ODE's
for i in range(n):
Ai = A.orientnew('A' + str(i), 'Axis', [q[i], A.z]) # Create a new frame
Ai.set_ang_vel(A, u[i] * A.z) # Set angular velocity
frames.append(Ai) # Add it to Frames list
Pi = P.locatenew('P' + str(i), l[i] * Ai.x) # Create a new point Pi
Pi.v2pt_theory(P, A, Ai) # Set velocity of Pi
Pai = Particle('Pa' + str(i), Pi, m[i]) # Create a new particle
particles.append(Pai) # Add Pai to Particles list
forces.append((Pi, m[i] * g * A.x)) # Set force applied at i-th Point
P = Pi # P is now the lowest Point
kin_odes.append(q[i].diff(t) - u[i]) # Kinematic ODE: dq_i/dt-u_i=0
kane = KanesMethod(A, q_ind=q, u_ind=u, kd_eqs=kin_odes)# Generate EoM's:
fr, frstar = kane.kanes_equations(forces, particles) # fr + frstar = 0