-
Notifications
You must be signed in to change notification settings - Fork 0
/
learning_model.py
558 lines (455 loc) · 17.7 KB
/
learning_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import random
import json
import os
import time
from config import PROGRESSION_FILE, IMAGES_MAPPING_FILE
from config import TEST, BURNING_SIZE
class ChainUnitType:
type_key = "type_key"
type_feature = "type_feature"
mode_open = "mode_open"
mode_question = "mode_question"
mode_active_question = "mode_active_question"
mode_hidden = "mode_hidden"
mode_highligted = "mode_highligted"
extra_focus = "extra_focus"
position_subtitle = "position_subtitle"
position_features = "position_features"
position_keys = "position_keys"
font_cyrillic = "font_cyrillic"
font_utf = "font_utf"
font_short_utf = "font_short_utf"
class ChainUnit:
def __init__(
S,
text,
type=None,
mode=None,
position=None,
order_no=None,
extra=None,
preferred_position=None,
feature_options=False,
hint=False,
font=ChainUnitType.font_utf,
):
S.text = text
S.type = type
S.mode = mode
S.position = position
S.order_no = order_no
S.font = font
S.extra = extra
S.hint = hint
S.feature_options = feature_options
class ChainedFeature:
def __init__(S, entity, features):
S.entity = entity
# TODO COMMON ABBREVATIONS
S.features = [_ if ">DICT>" not in _ else _.replace(">DICT>","")[:50] for _ in features ]
S.code_mode = False
S.info = ""
S.original_len = 1
S.hints = [False for _ in range(10)]
S.feature_level = 0
S.feature_errors = []
S.cummulative_error = 0
S.decreased = False
S.rised = False
S.review = False
S.attached_image = ""
S.basic_timing_per_level = {0: 45, 1: 30, 2: 30}
def set_mode(S, unit_type):
if S.feature_level == 0:
return ChainUnitType.mode_open
elif S.feature_level >= 1 and unit_type == ChainUnitType.type_feature:
return ChainUnitType.mode_question
else:
return ChainUnitType.mode_open
def ask_for_image(S):
if S.attached_image and S.feature_level < 2:
return S.attached_image
else:
return None
def set_extra(S, unit_type):
return ChainUnitType.extra_focus
def get_timing(S):
if S.feature_level == 0 and not S.check_hints():
return S.basic_timing_per_level[S.feature_level] // 3
else:
return S.basic_timing_per_level[S.feature_level]
def check_hints(S):
hints_set = True
if S.review:
return True
for i in range(len(S.features)):
if not S.hints[i]:
hints_set = False
return hints_set
def recount_hints(S):
if not S.check_hints():
S.feature_level = 0
S.decreased = True
def try_set_random_entity(S):
if S.review:
S.entity = "["+random.choice(S.features)+"]"
def get_context(S):
'''Both get features, and tick-like method'''
S.try_set_random_entity()
features = [
ChainUnit(
_,
ChainUnitType.type_feature,
S.set_mode(ChainUnitType.type_feature),
ChainUnitType.position_features,
i,
preferred_position=i,
feature_options=S.review,
hint=S.hints[i],
extra=S.set_extra(ChainUnitType.type_feature),
)
for (i, _) in enumerate(S.features)
]
return features
def register_error(S, error_index):
if error_index < len(S.feature_errors):
S.feature_errors[error_index] += 1
S.cummulative_error += 1
def register_hint(S, hint_index, hint_x_rel, hint_y_rel):
if hint_index < len(S.hints):
S.hints[hint_index] = [hint_x_rel, hint_y_rel]
def decrease_errors(S):
if S.cummulative_error > 1:
S.cummulative_error //= 2
else:
S.cummulative_error = 0
for i in range(len(S.feature_errors)):
error = S.feature_errors[i]
if error > 1:
S.feature_errors[i] //= 2
else:
S.feature_errors[i] = 0
def get_main_title(S):
return S.entity
def register_progress(S, is_solved=False):
timing = S.basic_timing_per_level[S.feature_level]
level = S.feature_level
if is_solved:
if level != 0:
S.basic_timing_per_level[S.feature_level] = (
timing + 2 if timing < 40 else 40
)
S.feature_level = level + 1 if level < 2 else 2
S.rised = True
S.decreased = False
else:
if level != 0:
S.basic_timing_per_level[S.feature_level] = (
timing - 2 if timing > 25 else 25
)
S.feature_level = level - 1 if level > 0 else 0
S.decreased = True
S.rised = False
def select(S):
S.rised = False
S.decreased = False
def deselect(S):
S.rised = False
S.decreased = False
def get_features_len(S):
return len(S.keys)
def __repr__(S):
return f"{S.entity} | progress = {S.feature_level} | errors = {S.cummulative_error}"
class FeaturesChain:
def __init__(S, chain_no, features, is_review_requires=True):
S.chain_no = chain_no
S.features = features
if is_review_requires:
S.features.append(S.create_review_chain(S.features))
S.features[-1].review = True
S.features[-1].original_len = len(S.features[-1].features)
S.progression_level = 0
S.errors_mapping = [[0 for _ in range(10)] for j in range(5)]
S.hints_mapping = [[False for _ in range(10)] for j in range(5)]
S.max_error = 0
S.cummulative_error = 0
S.fresh_errors = 0
S.last_review_urge = 0
S.active_position = -1
S.ascended = False
def create_review_chain(S, features):
entity = str(S.chain_no).rjust(3, "0")
review_features = []
for feature in features:
review_features.append(feature.entity)
return ChainedFeature(entity, review_features)
def ascend(S):
for feature in S.features:
feature.feature_level = 2
feature.deselect()
def set_errors(S, errors_mapping):
S.errors_mapping = errors_mapping
for feature, feature_errors in zip(S.features, S.errors_mapping):
feature.feature_errors = feature_errors
feature.cummulative_error = sum(feature_errors)
S.max_error = max(
[max(feature.feature_errors, default=0) for feature in S.features],
default=0,
)
S.cummulative_error = sum(sum(feature.feature_errors)
for feature in S.features)
def set_hints(S, hints_mapping):
S.hints_mapping = hints_mapping
all_hints_set = True
for feature, feature_hints in zip(S.features, S.hints_mapping):
feature.hints = feature_hints
def update_errors(S, register_new=False):
if register_new:
S.fresh_errors += 1
for error_index, (feature, _) in enumerate(zip(S.features, S.errors_mapping)):
S.errors_mapping[error_index] = feature.feature_errors
S.max_error = max(
[max(feature.feature_errors, default=0) for feature in S.features],
default=0,
)
S.cummulative_error = sum(sum(feature.feature_errors)
for feature in S.features)
def update_hints(S):
for hint_index, (feature, _) in enumerate(zip(S.features, S.hints_mapping)):
S.hints_mapping[hint_index] = feature.hints
def get_worst_features(S, features_no=1):
sorted_by_mistake = sorted(
S.features, key=lambda _: _.cummulative_error, reverse=True
)
return sorted_by_mistake[:features_no]
def initialize_images(S, images_list):
for i, feature in enumerate(images_list):
i2 = (i + 1) % len(images_list)
# print(i, i2, len(images_list))
if i < len(S.features):
S.features[i].attached_image = [
images_list[i], images_list[i2]]
else:
break
# for image, feature in zip(images_list, S.features):
# feature.attached_image = image
S.features[-1].attached_image = images_list
def get_next_feature(S):
S.features[S.active_position].recount_hints()
level = S.features[S.active_position].feature_level
is_fallback = S.features[S.active_position].decreased
is_up = S.features[S.active_position].rised
if level == 0 and is_fallback:
return S.features[S.active_position]
if level == 1:
return S.features[S.active_position]
if level == 2 and not is_up:
return S.features[S.active_position]
S.features[S.active_position].deselect()
S.active_position += 1
if S.active_position >= len(S.features):
S.active_position = 0
if S.fresh_errors <= 3:
S.progression_level += 1
elif S.fresh_errors <= 6:
S.progression_level = S.progression_level
else:
S.progression_level -= 1
if S.progression_level < 0:
S.progression_level = 0
S.fresh_errors = 0
return None
S.features[S.active_position].select()
S.features[S.active_position].recount_hints()
return S.features[S.active_position]
class ChainedModel:
def __init__(S, chains):
S.chains = chains
S.active_chain = None
S.old_limit = 2
S.new_limit = 2
S.mistakes_trigger = False
S.mistakes_chain = []
S.burning_chain = []
S.chain_alter_notify = False
S.skip_first_alter = True
is_restored = S.restore_results(PROGRESSION_FILE)
if not is_restored:
S.active_chain = S.get_active_chain()
S.dump_results(PROGRESSION_FILE)
else:
S.change_active_chain()
S.attach_images(IMAGES_MAPPING_FILE)
def resample(S):
if len(S.mistakes_chain) >= 5:
S.mistakes_trigger = True
for chain in S.chains:
if chain.progression_level > 0:
chain.last_review_urge = chain.last_review_urge - 1
if S.old_limit:
S.chains.sort(key=lambda _: _.progression_level +
_.last_review_urge * 0.25)
else:
S.chains.sort(key=lambda _: _.progression_level)
if not S.new_limit:
S.old_limit = 2
S.new_limit = 2
S.dump_results(PROGRESSION_FILE)
def add_mistake_chains(S):
if not S.active_chain:
return
worst_features = S.active_chain.get_worst_features(features_no=2)
for feature in worst_features:
if feature.cummulative_error == 0 or feature in S.mistakes_chain:
continue
S.mistakes_chain.append(feature)
S.mistakes_chain.sort(key=lambda _: _.cummulative_error, reverse=True)
def change_active_chain(S):
if not S.skip_first_alter:
S.chain_alter_notify = True
else:
S.skip_first_alter = False
S.add_mistake_chains()
S.resample()
if S.mistakes_trigger:
S.mistakes_trigger = False
if len(S.mistakes_chain) > 5:
mistakes_to_work, S.mistakes_chain = (
S.mistakes_chain[:5],
S.mistakes_chain[5:],
)
for mistake in mistakes_to_work:
mistake.decrease_errors()
S.active_chain = FeaturesChain(
-1, mistakes_to_work, is_review_requires=False
)
return
S.active_chain = S.chains[0]
if S.active_chain.last_review_urge < 0:
S.old_limit -= 1
else:
S.new_limit -= 1
S.active_chain.last_review_urge = 0
S.active_chain.update_errors()
def get_options_list(S, sample):
options = [sample.text]
while len(options) < 10:
try:
if sample.type == ChainUnitType.type_feature:
random_chain = random.choice(
random.choice(S.chains).features)
if random_chain.review:
continue
if sample.feature_options:
selected = random_chain.entity
else:
selected = random.choice(random_chain.features)
options.append(selected)
except Exception as e:
continue
seed = time.time()
random.seed(seed)
random.shuffle(options)
return options
def get_next_feature(S):
if not S.active_chain:
S.change_active_chain()
next_feature = S.active_chain.get_next_feature()
if not next_feature:
S.change_active_chain()
next_feature = S.active_chain.get_next_feature()
if not next_feature.review and not next_feature in S.burning_chain:
S.burning_chain.append(next_feature)
return next_feature
def is_burning(S):
return len(S.burning_chain) >= BURNING_SIZE
def get_burning_features_list(S):
features_list = []
#S.burning_chain = random.sample(S.burning_chain, BURNING_SIZE)
for feature in S.burning_chain:
features_list.append([feature.entity])
if isinstance(feature.attached_image, list):
features_list[-1] += feature.features[:feature.original_len] + [feature.attached_image[0]]
else:
features_list[-1] += feature.features[:feature.original_len] + [feature.attached_image]
S.burning_chain = []
return features_list
def dump_results(S, progression_file):
backup = {}
for chain in S.chains:
backup[chain.chain_no] = [
chain.progression_level,
chain.last_review_urge,
{"errors": chain.errors_mapping},
{"hints": chain.hints_mapping},
]
with open(progression_file, "w") as current_progress:
json.dump(backup, current_progress, indent=2)
def attach_images(S, images_file):
if os.path.exists(images_file):
images = {}
with open(images_file) as images_ordered:
images = json.load(images_ordered)
if images:
for chain in S.chains:
if chain.chain_no in images:
chain.initialize_images(images[chain.chain_no])
else:
print(f"Chain {chain.chain_no} have no image prepared")
def restore_results(S, progression_file):
if os.path.exists(progression_file):
progress = {}
with open(progression_file, encoding="UTF-8") as saved_prgress:
progress = json.load(saved_prgress)
if progress:
for chain in S.chains:
if chain.chain_no not in progress:
print(f"chain {chain.chain_no} not in progress")
errors_mapping = [
[0 for _ in range(10)] for j in range(5)]
hints_mapping = [
[False for _ in range(10) for j in range(5)]]
progress[chain.chain_no] = [
0,
0,
{"errors": chain.errors_mapping},
{"hints": chain.hints_mapping},
]
chain.progression_level = progress[chain.chain_no][0]
chain.last_review_urge = progress[chain.chain_no][1]
if chain.progression_level > 0:
chain.ascend()
errors_mapping = []
hints_mapping = []
# ERROR 1
outdated_format = (
len(progress[chain.chain_no]) != 4
or not isinstance(progress[chain.chain_no][2], dict)
or not isinstance(progress[chain.chain_no][3], dict)
)
if outdated_format or "errors" not in progress[chain.chain_no][2]:
print(f"errors not in {chain.chain_no}")
errors_mapping = [
[0 for _ in range(10)] for j in range(5)]
else:
errors_mapping = progress[chain.chain_no][2]["errors"]
if outdated_format or "hints" not in progress[chain.chain_no][3]:
print(f"hints not in {chain.chain_no}")
hints_mapping = [
[False for _ in range(10)] for j in range(5)]
else:
hints_mapping = progress[chain.chain_no][3]["hints"]
chain.set_errors(errors_mapping)
chain.set_hints(hints_mapping)
return True
return False
def get_chains_progression(S):
minimal_level = min(
S.chains, key=lambda _: _.progression_level
).progression_level
mastered = len(
list(filter(lambda _: _.progression_level > minimal_level, S.chains))
)
return f"{minimal_level}x {mastered}/{len(S.chains)}"
def get_active_chain(S):
return S.active_chain