-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomparisons.py
489 lines (403 loc) · 17.2 KB
/
comparisons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import numpy as np
from matplotlib import pyplot as plt
from powerusageparser import open_srumutil_data
from batteryusageparser import open_battery_reports
from wpaparser import get_wpa_data
from utils import (
get_ordered_datalist_battery,
get_ordered_datalist_power,
milliwatthours_to_millijoules,
millijoules_to_milliwatts
)
DIST_BETWEEN_SAMPLES = 60
def get_avg_consumption_rate(ordered_datalist, total_time, milliwatthour=False, header=None, consumption_from=None):
consumption = []
for row in ordered_datalist:
consumption.append([
x for i, x in enumerate(row) if (not consumption_from) or (header[i] in consumption_from)
])
if milliwatthour:
avg_consumption = [sum(x)/3600 for x in zip(*consumption)]
else:
avg_consumption = [sum(x)/total_time for x in zip(*consumption)]
return avg_consumption
def get_battery_deltas(ordered_datalist, timewindow=60):
deltas = []
for i in range(len(ordered_datalist)):
if i >= len(ordered_datalist) - 1:
continue
deltas.append(millijoules_to_milliwatts(
milliwatthours_to_millijoules((ordered_datalist[i]-ordered_datalist[i+1])),
timewindow
))
return deltas
def cut_time_out(data, start_ind=0, time_to_analyze=None, interval=60):
if not time_to_analyze:
return data
newdata = data[:start_ind]
currtime = 0
for val in data[start_ind:]:
if currtime >= time_to_analyze:
break
newdata.append(val)
currtime += interval
return newdata
def compare_data(baselinedir, testdir, config, args):
app = args['application']
print("Getting SRUMUTIL baseline data...")
header, baselinedata = open_srumutil_data(
baselinedir,
args['baseline_application'],
args['exclude_baseline_apps'],
config['baselinestarttime'] if 'baselinestarttime' in config else 600,
args['baseline_time']
)
print("Getting SRUMUTIL testing data...")
_, testdata = open_srumutil_data(
testdir,
args['application'],
args['exclude_test_apps'],
config['teststarttime'],
args['test_time']
)
print("Getting battery reports for baseline...")
baseline_reports = open_battery_reports(baselinedir)
print("Getting battery reports for test...")
test_reports = open_battery_reports(testdir)
print("Running comparison")
# Conduct battery usage analysis
ord_baseline_battery = get_ordered_datalist_battery(baseline_reports)
ord_test_battery = get_ordered_datalist_battery(test_reports)
ord_baseline = [float(r[1][1]) for r in ord_baseline_battery]
ord_test = [float(r[1][1]) for r in ord_test_battery]
ord_baseline_pc = [float(r[1][0]) for r in ord_baseline_battery]
ord_test_pc = [float(r[1][0]) for r in ord_test_battery]
x_range = []
for i,_ in enumerate(ord_baseline):
x_range.append(DIST_BETWEEN_SAMPLES*i)
if args['smooth_battery']:
N = 20
cumsum, moving_aves = [0], []
for i, x in enumerate(ord_baseline, 1):
cumsum.append(cumsum[i-1] + x)
if i>=N:
moving_ave = (cumsum[i] - cumsum[i-N])/N
moving_aves.append(moving_ave)
ord_baseline = moving_aves
deltas_base = get_battery_deltas(ord_baseline, timewindow=60)
deltas_test = get_battery_deltas(ord_test, timewindow=60)
if args['smooth_battery']:
N = 15
cumsum, moving_aves = [0], []
for i, x in enumerate(deltas_base, 1):
cumsum.append(cumsum[i-1] + x)
if i>=N:
moving_ave = (cumsum[i] - cumsum[i-N])/N
#can do stuff with moving_ave here
moving_aves.append(moving_ave)
deltas_base = moving_aves
# Determine baseline boundaries
found_decrease = 0
first_good_base = 0
for i, val in enumerate(deltas_base):
if val <= 0:
continue
else:
first_good_base = i
if first_good_base < 0:
first_good_base = 0
break
if args['time_to_analyze']:
deltas_base = cut_time_out(
deltas_base, start_ind=first_good_base, time_to_analyze=args['time_to_analyze']
)
ord_baseline = cut_time_out(
ord_baseline, start_ind=first_good_base, time_to_analyze=args['time_to_analyze']
)
currmax = max(ord_baseline)
final_decrease = 0
decreases = 0
curr_ind = 0
all_decreases = []
while curr_ind < len(ord_baseline):
final_decrease_baseline = curr_ind
for i, val in enumerate(ord_baseline[curr_ind:], curr_ind):
if val == currmax:
continue
else:
final_decrease_baseline = i
break
print(curr_ind)
print(len(ord_baseline))
curr_ind = final_decrease_baseline
if len(all_decreases) == 0:
all_decreases.append(final_decrease_baseline)
continue
if final_decrease_baseline != all_decreases[-1]:
all_decreases.append(final_decrease_baseline)
else:
break
curr_max = max(ord_baseline)
all_decreases = [0]
for i, val in enumerate(ord_baseline):
if val == curr_max:
continue
else:
curr_max = val
all_decreases.append(i)
for i, val in enumerate(all_decreases[:-1]):
baseline_time = x_range[all_decreases[i+1]]-x_range[val]
avg_baseline_battery_mw = abs(millijoules_to_milliwatts(
milliwatthours_to_millijoules((ord_baseline[val] - ord_baseline[all_decreases[i+1]])),
abs(baseline_time)
))
print(avg_baseline_battery_mw)
print(all_decreases)
print("all_decreases")
currmin = ord_baseline[-1]
final_decrease = 0
for i, val in enumerate(ord_baseline[::-1]):
if val == currmin:
continue
else:
final_decrease = i
if final_decrease > len(ord_baseline):
final_decrease = len(ord_baseline)
else:
final_decrease_baseline = len(ord_baseline) - final_decrease
break
# Determine test boundaries
found_decrease = 0
first_good_test = 0
for i, val in enumerate(deltas_test):
if val <= 0:
continue
else:
first_good_test = i-1
if first_good_test < 0 or first_good_test >= len(deltas_test):
first_good_test = 0
break
if args['time_to_analyze']:
deltas_test = cut_time_out(
deltas_test, start_ind=first_good_test, time_to_analyze=args['time_to_analyze']
)
ord_test = cut_time_out(
ord_test, start_ind=first_good_test, time_to_analyze=args['time_to_analyze']
)
currmin = ord_test[-1]
final_decrease_test = 0
for i, val in enumerate(ord_test[::-1]):
if val == currmin:
continue
else:
final_decrease = i
if final_decrease > len(ord_test):
final_decrease = len(ord_test)
else:
final_decrease_test = len(ord_test) - final_decrease
break
baseline_time = x_range[final_decrease_baseline]-x_range[first_good_base+1]
avg_baseline_battery_mw = 0
if baseline_time > 0:
avg_baseline_battery_mw = abs(millijoules_to_milliwatts(
milliwatthours_to_millijoules((ord_baseline[first_good_base+1] - ord_baseline[final_decrease_baseline])),
abs(baseline_time)
))
test_time = x_range[final_decrease_test]-x_range[first_good_test]
avg_test_battery_mw = 0
if test_time > 0:
avg_test_battery_mw = abs(millijoules_to_milliwatts(
milliwatthours_to_millijoules((ord_test[first_good_test] - ord_test[final_decrease_test])),
abs(test_time)
))
avg_baseline_battery_mwh = (ord_baseline[first_good_base] - ord_baseline[-1])
avg_test_battery_mwh = (ord_test[first_good_test] - ord_test[-1])
if args['time_to_analyze']:
ord_baseline_pc = cut_time_out(ord_baseline_pc, start_ind=first_good_base, time_to_analyze=args['time_to_analyze'])
ord_test_pc = cut_time_out(ord_test_pc, start_ind=first_good_base, time_to_analyze=args['time_to_analyze'])
pc_lost_base = ord_baseline_pc[first_good_base] - ord_baseline_pc[-1]
pc_lost_test = ord_test_pc[first_good_test] - ord_test_pc[-1]
if args['plot_battery']:
avg_test_battery = 0
plt.figure()
plt.subplot(1,2,1)
plt.title("Battery capacity over time (mW vs time)")
plt.ylabel("mWh")
plt.xlabel("Seconds")
plt.plot(x_range[:len(ord_baseline)], ord_baseline, label='Capacity')
axes = plt.gca()
slope = (ord_baseline[-1] - ord_baseline[0])/(x_range[-1]-x_range[0])
y_vals = ord_baseline[0] + slope * np.asarray(x_range[:len(ord_baseline)])
plt.plot(list(np.asarray(x_range[:len(ord_baseline)]) + x_range[first_good_base]), y_vals, label='linear capacity (1)')
slope = (ord_baseline[-1] - ord_baseline[first_good_base])/(x_range[-1]-x_range[first_good_base])
y_vals = ord_baseline[first_good_base] + slope * (np.asarray(x_range[:len(ord_baseline)]))
plt.plot(list(np.asarray(x_range[:len(ord_baseline)]) + x_range[first_good_base]), y_vals, label='linear capacity (2 - ignoring 0s)')
slope = (ord_baseline[final_decrease_baseline] - ord_baseline[first_good_base+1])/(x_range[final_decrease_baseline]-x_range[first_good_base+1])
y_vals = ord_baseline[first_good_base+1] + slope * (np.asarray(x_range[:len(ord_baseline)]))
plt.plot(list(np.asarray(x_range[:len(ord_baseline)]) + x_range[first_good_base+1]), y_vals, label='linear capacity (3 - ignoring 0s, and first drain)')
plt.legend()
plt.subplot(1,2,2)
plt.title("Drain rate over time (mW vs time)")
plt.ylabel("mW")
plt.xlabel("Seconds")
plt.plot(x_range[:len(deltas_base)], deltas_base, label='drain rate')
plt.axhline(avg_baseline_battery_mw, label='mean', color='red')
plt.legend()
plt.show()
# Conduct power usage analysis
ord_baseline = get_ordered_datalist_power(baselinedata)
ord_baseline = [r[1:] for r in ord_baseline]
if args['time_to_analyze']:
ord_baseline = cut_time_out(ord_baseline, time_to_analyze=args['time_to_analyze'])
args['baseline_time'] = args['time_to_analyze']
avg_baseline_consumption_mw = get_avg_consumption_rate(
ord_baseline, args['baseline_time'], milliwatthour=False, header=header[1:], consumption_from=args['consumption_from']
)
avg_baseline_consumption_mwh = get_avg_consumption_rate(
ord_baseline, args['baseline_time'], milliwatthour=True, header=header[1:], consumption_from=args['consumption_from']
)
ord_test = get_ordered_datalist_power(testdata)
ord_test = [r[1:] for r in ord_test]
if args['time_to_analyze']:
ord_test = cut_time_out(ord_test, time_to_analyze=args['time_to_analyze'])
args['test_time'] = args['time_to_analyze']
avg_test_consumption_mw = get_avg_consumption_rate(
ord_test, args['test_time'], milliwatthour=False, header=header[1:], consumption_from=args['consumption_from']
)
avg_test_consumption_mwh = get_avg_consumption_rate(
ord_test, args['test_time'], milliwatthour=True, header=header[1:], consumption_from=args['consumption_from']
)
colors = [
'black', 'silver', 'red', 'gold',
'darkgreen', 'navy', 'm', 'darkmagenta',
'mediumslateblue', 'limegreen', 'goldenrod',
'maroon', 'dimgray'
]
if args['plot_power']:
plt.figure()
ax1 = plt.gca()
x_range = []
ignores = []
for i, _ in enumerate(ord_baseline):
x_range.append(DIST_BETWEEN_SAMPLES*i)
for i, val in enumerate(ignores):
if i == 0:
ignores.append(i)
number_of_plots = len(ord_baseline) - len(ignores)
colormap = plt.cm.gnuplot
ax1.set_color_cycle([colormap(i) for i in np.linspace(0, 1, number_of_plots)])
all_entries = [x for x in zip(*ord_baseline)]
for i, row in enumerate(all_entries):
if i in ignores: continue
plt.plot(x_range,[x/60 for x in row], label=header[i+1], color=colors[i])
plt.title("Baseline Power (mW) over time (s)")
plt.legend()
plt.xlim(0,9500)
plt.figure()
ax1 = plt.gca()
x_range = []
ignores = []
for i, _ in enumerate(ord_test):
x_range.append(DIST_BETWEEN_SAMPLES*i)
for i, val in enumerate(ignores):
if i == 0:
ignores.append(i)
number_of_plots = len(ord_test) - len(ignores)
colormap = plt.cm.tab20
ax1.set_color_cycle([colormap(i) for i in np.linspace(0, 1, number_of_plots)])
all_entries = [x for x in zip(*ord_test)]
for i, row in enumerate(all_entries):
if i in ignores: continue
plt.plot(x_range,[x/60 for x in row], label=header[i+1], color=colors[i])
plt.title("Testing Power (mW) over time (s)")
plt.legend()
plt.show()
powerbaseheader_mw = ','.join(['power-baseline-' + i + '-mw' for i in header[1:]])
powertestheader_mw = ','.join(['power-testing-' + i + '-mw' for i in header[1:]])
powerbaseheader_mwh = ','.join(['power-baseline-' + i + '-mwh' for i in header[1:]])
powertestheader_mwh = ','.join(['power-testing-' + i + '-mwh' for i in header[1:]])
batteryheader = 'battery-baseline-mw,battery-testing-mw,' + \
'battery-baseline-mwh,battery-testing-mwh,' + \
'battery-baseline-%lost,battery-testing-%lost'
powerbasecsv = powerbaseheader_mw + '\n' + ','.join([str(x) for x in avg_baseline_consumption_mw])
powertestcsv = powertestheader_mw + '\n' + ','.join([str(x) for x in avg_test_consumption_mw])
powerbasecsv_mwh = powerbaseheader_mwh + '\n' + ','.join([str(x) for x in avg_baseline_consumption_mwh])
powertestcsv_mwh = powertestheader_mwh + '\n' + ','.join([str(x) for x in avg_test_consumption_mwh])
batterycsv = batteryheader + '\n' + ','.join(
[
str(avg_baseline_battery_mw), str(avg_test_battery_mw),
str(avg_baseline_battery_mwh), str(avg_test_battery_mwh),
str(pc_lost_base), str(pc_lost_test)
]
)
return {
'power-base-mw': powerbasecsv,
'power-test-mw': powertestcsv,
'power-base-mwh': powerbasecsv_mwh,
'power-test-mwh': powertestcsv_mwh,
'battery': batterycsv
}
def compare_to_wpa(datadir, config, args):
print("Getting SRUMUTIL power measurements...")
header, baselinedata = open_srumutil_data(
datadir,
args['baseline_application'],
args['exclude_baseline_apps'],
config['baselinestarttime'] if 'baselinestarttime' in config else 600,
args['baseline_time']
)
# Conduct power usage analysis
ord_baseline = get_ordered_datalist_power(baselinedata)
ord_baseline = [r[1:] for r in ord_baseline]
if args['time_to_analyze']:
ord_baseline = cut_time_out(ord_baseline, time_to_analyze=args['time_to_analyze'])
args['baseline_time'] = args['time_to_analyze']
avg_baseline_consumption_mw = get_avg_consumption_rate(
ord_baseline, args['baseline_time'], milliwatthour=False, header=header[1:], consumption_from=args['consumption_from']
)
avg_baseline_consumption_mwh = get_avg_consumption_rate(
ord_baseline, args['baseline_time'], milliwatthour=True, header=header[1:], consumption_from=args['consumption_from']
)
all_entries = [x for x in zip(*ord_baseline)]
all_entries_mw = []
for i, row in enumerate(all_entries):
all_entries_mw = [x/60 for x in row]
# Open WPA files
_, wpadata = get_wpa_data(
datadir, args['baseline_application'], args['exclude_baseline_apps'], args['baseline_time']
)
colors = [
'black', 'silver', 'red', 'gold',
'darkgreen', 'navy', 'm', 'darkmagenta',
'mediumslateblue', 'limegreen', 'goldenrod',
'maroon', 'dimgray'
]
if args['plot_power']:
plt.figure()
ax1 = plt.gca()
x_range = []
ignores = []
for i, _ in enumerate(ord_baseline):
x_range.append(DIST_BETWEEN_SAMPLES*i)
for i, val in enumerate(ignores):
if i == 0:
ignores.append(i)
number_of_plots = len(ord_baseline) - len(ignores)
colormap = plt.cm.gnuplot
ax1.set_color_cycle([colormap(i) for i in np.linspace(0, 1, number_of_plots)])
all_entries = [x for x in zip(*ord_baseline)]
# TODO: Plot power usage as bars
for i, row in enumerate(all_entries):
if i in ignores: continue
plt.plot(x_range,[x/60 for x in row], label=header[i+1], color=colors[i])
# TODO: Average 1 minute intervals and plot them as bars
colors2 = ['blue', 'lightblue']
for i, dset in enumerate(wpadata):
print(dset)
plt.plot(wpadata[dset]['times'], wpadata[dset]['data'], label=dset, color=colors2[i])
# TODO: Correlate bar plot values
plt.title("Baseline Power (mW) over time (s)")
plt.legend()
plt.xlim(0,9500)
plt.show()
return None