-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperplexity.py
53 lines (46 loc) · 2.09 KB
/
perplexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
from pathlib import Path
import os
import numpy as np
from tqdm import tqdm
import math
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
def conditional_perplexity(generations_df, model, tokenizer, device='cuda'):
perplexities = []
ct = 0
# for every prompt
for i, row in tqdm(generations_df.iterrows(), total=len(generations_df.index), desc='Evaluating fluency'):
prompt = row.prompt
prompt = prompt.split('_TREE_TOKEN_00000')[-1].lstrip()
# prompt = row.prompt["text"]
prompt_input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
prompt_loss = model(prompt_input_ids, labels=prompt_input_ids)[0] * (prompt_input_ids.shape[1]-1)
# for every generation conditioned on the prompt
generations = [g['text'] for g in row['generations'] if g['text']]
for gen in generations:
full_input_ids = tokenizer.encode(prompt+gen, return_tensors='pt').to(device)
full_loss = model(full_input_ids, labels=full_input_ids)[0] * (full_input_ids.shape[1]-1)
loss = (full_loss - prompt_loss) / (full_input_ids.shape[1] - prompt_input_ids.shape[1])
ppl = math.exp(loss.item())
if ppl < 1e4: # for sanity
perplexities.append(ppl)
return np.nanmean(perplexities)
save_path = 'SAVE_PATH'
generations_file = f'{save_path}/reward.json'
print(generations_file)
output_dir = Path(os.path.dirname(generations_file))
assert os.path.exists(generations_file)
generations_df = pd.read_json(generations_file, lines=True)
# calculate fluency
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_model = AutoModelForCausalLM.from_pretrained('gpt2-xl').to(device)
eval_tokenizer = AutoTokenizer.from_pretrained('gpt2-xl')
print('model initialization done!')
torch.cuda.empty_cache()
with torch.no_grad():
ppl = conditional_perplexity(generations_df, eval_model, eval_tokenizer, device=device)
print(f'perplexity = {ppl}')
# write output results
with open(output_dir / 'eval_results.txt', 'a') as fo:
fo.write(f'perplexity = {ppl}\n')