-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathenformer_test.py
45 lines (34 loc) · 1.35 KB
/
enformer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test enformer model by applying random sequence as input.
Test:
$ python enformer_test.py
"""
import random
import unittest
import enformer
import numpy as np
class TestEnformer(unittest.TestCase):
def test_enformer(self):
model = enformer.Enformer(channels=1536, num_transformer_layers=11)
inputs = _get_random_input()
outputs = model(inputs, is_training=True)
self.assertEqual(outputs['human'].shape, (1, enformer.TARGET_LENGTH, 5313))
self.assertEqual(outputs['mouse'].shape, (1, enformer.TARGET_LENGTH, 1643))
def _get_random_input():
seq = ''.join(
[random.choice('ACGT') for _ in range(enformer.SEQUENCE_LENGTH)])
return np.expand_dims(enformer.one_hot_encode(seq), 0).astype(np.float32)
if __name__ == '__main__':
unittest.main()