-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathagent.py
377 lines (322 loc) · 14.7 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tandem DQN agent class."""
import typing
from typing import Any, Callable, Mapping, Set, Text
from absl import logging
import dm_env
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
import optax
import rlax
from tandem_dqn import losses
from tandem_dqn import parts
from tandem_dqn import processors
from tandem_dqn import replay as replay_lib
class TandemTuple(typing.NamedTuple):
active: Any
passive: Any
def tandem_map(fn: Callable[..., Any], *args):
return TandemTuple(
active=fn(*[a.active for a in args]),
passive=fn(*[a.passive for a in args]))
def replace_module_params(source, target, modules):
"""Replace selected module params in target by corresponding source values."""
source, _ = hk.data_structures.partition(
lambda module, name, value: module in modules,
source)
return hk.data_structures.merge(target, source)
class TandemDqn(parts.Agent):
"""Tandem DQN agent."""
def __init__(
self,
preprocessor: processors.Processor,
sample_network_input: jnp.ndarray,
network: TandemTuple,
optimizer: TandemTuple,
loss: TandemTuple,
transition_accumulator: Any,
replay: replay_lib.TransitionReplay,
batch_size: int,
exploration_epsilon: Callable[[int], float],
min_replay_capacity_fraction: float,
learn_period: int,
target_network_update_period: int,
tied_layers: Set[str],
rng_key: parts.PRNGKey,
):
self._preprocessor = preprocessor
self._replay = replay
self._transition_accumulator = transition_accumulator
self._batch_size = batch_size
self._exploration_epsilon = exploration_epsilon
self._min_replay_capacity = min_replay_capacity_fraction * replay.capacity
self._learn_period = learn_period
self._target_network_update_period = target_network_update_period
# Initialize network parameters and optimizer.
self._rng_key, network_rng_key_active, network_rng_key_passive = (
jax.random.split(rng_key, 3))
active_params = network.active.init(
network_rng_key_active, sample_network_input[None, ...])
passive_params = network.passive.init(
network_rng_key_passive, sample_network_input[None, ...])
self._online_params = TandemTuple(
active=active_params, passive=passive_params)
self._target_params = self._online_params
self._opt_state = tandem_map(
lambda optim, params: optim.init(params),
optimizer, self._online_params)
# Other agent state: last action, frame count, etc.
self._action = None
self._frame_t = -1 # Current frame index.
# Stats.
stats = [
'loss_active',
'loss_passive',
'frac_diff_argmax',
'mc_error_active',
'mc_error_passive',
'mc_error_abs_active',
'mc_error_abs_passive',
]
self._statistics = {k: np.nan for k in stats}
# Define jitted loss, update, and policy functions here instead of as
# class methods, to emphasize that these are meant to be pure functions
# and should not access the agent object's state via `self`.
def network_outputs(rng_key, online_params, target_params, transitions):
"""Compute all potentially needed outputs of active and passive net."""
_, *apply_keys = jax.random.split(rng_key, 4)
outputs_tm1 = tandem_map(
lambda net, param: net.apply(param, apply_keys[0], transitions.s_tm1),
network, online_params)
outputs_t = tandem_map(
lambda net, param: net.apply(param, apply_keys[1], transitions.s_t),
network, online_params)
outputs_target_t = tandem_map(
lambda net, param: net.apply(param, apply_keys[2], transitions.s_t),
network, target_params)
return outputs_tm1, outputs_t, outputs_target_t
# Helper functions to define active and passive losses.
# Active and passive losses are allowed to depend on all active and passive
# outputs, but stop-gradient is used to prevent gradients from flowing
# from active loss to passive network params and vice versa.
def sg_active(x):
return TandemTuple(
active=jax.lax.stop_gradient(x.active), passive=x.passive)
def sg_passive(x):
return TandemTuple(
active=x.active, passive=jax.lax.stop_gradient(x.passive))
def compute_loss(online_params, target_params, transitions, rng_key):
rng_key, apply_key = jax.random.split(rng_key)
outputs_tm1, outputs_t, outputs_target_t = network_outputs(
apply_key, online_params, target_params, transitions)
_, loss_key_active, loss_key_passive = jax.random.split(rng_key, 3)
loss_active = loss.active(
sg_passive(outputs_tm1), sg_passive(outputs_t), outputs_target_t,
transitions, loss_key_active)
loss_passive = loss.passive(
sg_active(outputs_tm1), sg_active(outputs_t), outputs_target_t,
transitions, loss_key_passive)
# Logging stuff.
a_tm1 = transitions.a_tm1
mc_return_tm1 = transitions.mc_return_tm1
q_values = TandemTuple(
active=outputs_tm1.active.q_values,
passive=outputs_tm1.passive.q_values)
mc_error = jax.tree_map(
lambda q: losses.batch_mc_learning(q, a_tm1, mc_return_tm1),
q_values)
mc_error_abs = jax.tree_map(jnp.abs, mc_error)
q_argmax = jax.tree_map(lambda q: jnp.argmax(q, axis=-1), q_values)
argmax_diff = jnp.not_equal(q_argmax.active, q_argmax.passive)
batch_mean = lambda x: jnp.mean(x, axis=0)
logs = {
'loss_active': loss_active,
'loss_passive': loss_passive
}
logs.update(jax.tree_map(batch_mean, {
'frac_diff_argmax': argmax_diff,
'mc_error_active': mc_error.active,
'mc_error_passive': mc_error.passive,
'mc_error_abs_active': mc_error_abs.active,
'mc_error_abs_passive': mc_error_abs.passive,
}))
return loss_active + loss_passive, logs
def optim_update(optim, online_params, d_loss_d_params, opt_state):
updates, new_opt_state = optim.update(d_loss_d_params, opt_state)
new_online_params = optax.apply_updates(online_params, updates)
return new_opt_state, new_online_params
def compute_loss_grad(rng_key, online_params, target_params, transitions):
rng_key, grad_key = jax.random.split(rng_key)
(_, logs), d_loss_d_params = jax.value_and_grad(
compute_loss, has_aux=True)(
online_params, target_params, transitions, grad_key)
return rng_key, logs, d_loss_d_params
def update_active(rng_key, opt_state, online_params, target_params,
transitions):
"""Applies learning update for active network only."""
rng_key, logs, d_loss_d_params = compute_loss_grad(
rng_key, online_params, target_params, transitions)
new_opt_state_active, new_online_params_active = optim_update(
optimizer.active, online_params.active, d_loss_d_params.active,
opt_state.active)
new_opt_state = opt_state._replace(
active=new_opt_state_active)
new_online_params = online_params._replace(
active=new_online_params_active)
return rng_key, new_opt_state, new_online_params, logs
self._update_active = jax.jit(update_active)
def update_passive(rng_key, opt_state, online_params, target_params,
transitions):
"""Applies learning update for passive network only."""
rng_key, logs, d_loss_d_params = compute_loss_grad(
rng_key, online_params, target_params, transitions)
new_opt_state_passive, new_online_params_passive = optim_update(
optimizer.passive, online_params.passive, d_loss_d_params.passive,
opt_state.passive)
new_opt_state = opt_state._replace(
passive=new_opt_state_passive)
new_online_params = online_params._replace(
passive=new_online_params_passive)
return rng_key, new_opt_state, new_online_params, logs
self._update_passive = jax.jit(update_passive)
def update_active_passive(rng_key, opt_state, online_params,
target_params, transitions):
"""Applies learning update for both active & passive networks."""
rng_key, logs, d_loss_d_params = compute_loss_grad(
rng_key, online_params, target_params, transitions)
new_opt_state_active, new_online_params_active = optim_update(
optimizer.active, online_params.active, d_loss_d_params.active,
opt_state.active)
new_opt_state_passive, new_online_params_passive = optim_update(
optimizer.passive, online_params.passive, d_loss_d_params.passive,
opt_state.passive)
new_opt_state = TandemTuple(active=new_opt_state_active,
passive=new_opt_state_passive)
new_online_params = TandemTuple(active=new_online_params_active,
passive=new_online_params_passive)
return rng_key, new_opt_state, new_online_params, logs
self._update_active_passive = jax.jit(update_active_passive)
self._update = None # set_training_mode needs to be called to set this.
def sync_tied_layers(online_params):
"""Set tied layer params of passive to respective values of active."""
new_online_params_passive = replace_module_params(
source=online_params.active, target=online_params.passive,
modules=tied_layers)
return online_params._replace(passive=new_online_params_passive)
self._sync_tied_layers = jax.jit(sync_tied_layers)
def select_action(rng_key, network_params, s_t, exploration_epsilon):
"""Samples action from eps-greedy policy wrt Q-values at given state."""
rng_key, apply_key, policy_key = jax.random.split(rng_key, 3)
q_t = network.active.apply(network_params, apply_key,
s_t[None, ...]).q_values[0]
a_t = rlax.epsilon_greedy().sample(policy_key, q_t, exploration_epsilon)
return rng_key, a_t
self._select_action = jax.jit(select_action)
def step(self, timestep: dm_env.TimeStep) -> parts.Action:
"""Selects action given timestep and potentially learns."""
self._frame_t += 1
timestep = self._preprocessor(timestep)
if timestep is None: # Repeat action.
action = self._action
else:
action = self._action = self._act(timestep)
for transition in self._transition_accumulator.step(timestep, action):
self._replay.add(transition)
if self._replay.size < self._min_replay_capacity:
return action
if self._frame_t % self._learn_period == 0:
self._learn()
if self._frame_t % self._target_network_update_period == 0:
self._target_params = self._online_params
return action
def reset(self) -> None:
"""Resets the agent's episodic state such as frame stack and action repeat.
This method should be called at the beginning of every episode.
"""
self._transition_accumulator.reset()
processors.reset(self._preprocessor)
self._action = None
def _act(self, timestep) -> parts.Action:
"""Selects action given timestep, according to epsilon-greedy policy."""
s_t = timestep.observation
network_params = self._online_params.active
self._rng_key, a_t = self._select_action(
self._rng_key, network_params, s_t, self.exploration_epsilon)
return parts.Action(jax.device_get(a_t))
def _learn(self) -> None:
"""Samples a batch of transitions from replay and learns from it."""
logging.log_first_n(logging.INFO, 'Begin learning', 1)
transitions = self._replay.sample(self._batch_size)
self._rng_key, self._opt_state, self._online_params, logs = self._update(
self._rng_key,
self._opt_state,
self._online_params,
self._target_params,
transitions,
)
self._online_params = self._sync_tied_layers(self._online_params)
self._statistics.update(jax.device_get(logs))
def set_training_mode(self, mode: str):
"""Sets training mode to one of 'active', 'passive', or 'active_passive'."""
if mode == 'active':
self._update = self._update_active
elif mode == 'passive':
self._update = self._update_passive
elif mode == 'active_passive':
self._update = self._update_active_passive
@property
def online_params(self) -> TandemTuple:
"""Returns current parameters of Q-network."""
return self._online_params
@property
def statistics(self) -> Mapping[Text, float]:
"""Returns current agent statistics as a dictionary."""
# Check for DeviceArrays in values as this can be very slow.
assert all(not isinstance(x, jax.Array) for x in self._statistics.values())
return self._statistics
@property
def exploration_epsilon(self) -> float:
"""Returns epsilon value currently used by (eps-greedy) behavior policy."""
return self._exploration_epsilon(self._frame_t)
def get_state(self) -> Mapping[Text, Any]:
"""Retrieves agent state as a dictionary (e.g. for serialization)."""
state = {
'rng_key': self._rng_key,
'frame_t': self._frame_t,
'opt_state_active': self._opt_state.active,
'online_params_active': self._online_params.active,
'target_params_active': self._target_params.active,
'opt_state_passive': self._opt_state.passive,
'online_params_passive': self._online_params.passive,
'target_params_passive': self._target_params.passive,
'replay': self._replay.get_state(),
}
return state
def set_state(self, state: Mapping[Text, Any]) -> None:
"""Sets agent state from a (potentially de-serialized) dictionary."""
self._rng_key = state['rng_key']
self._frame_t = state['frame_t']
self._opt_state = TandemTuple(
active=jax.device_put(state['opt_state_active']),
passive=jax.device_put(state['opt_state_passive']))
self._online_params = TandemTuple(
active=jax.device_put(state['online_params_active']),
passive=jax.device_put(state['online_params_passive']))
self._target_params = TandemTuple(
active=jax.device_put(state['target_params_active']),
passive=jax.device_put(state['target_params_passive']))
self._replay.set_state(state['replay'])